The mosquito Aedes aegypti is the primary vector of a range of medically important viruses including dengue, Zika, West Nile, yellow fever, and chikungunya viruses. The endosymbiotic bacterium Wolbachia pipientis wAlbB strain is a promising biocontrol agent for blocking viral transmission by Ae. aegypti. To predict the long-term efficacy of field applications, a thorough understanding of the interactions between symbiont, host, and pathogen is required. Wolbachia influences host physiology in a variety of ways including reproduction, immunity, metabolism, and longevity. MicroRNAs (miRNAs) are highly conserved small non-coding RNAs that regulate gene expression in eukaryotes and viruses. Several miRNAs are known to regulate biological processes in Drosophila and mosquitoes, including facilitating Wolbachia maintenance. We generated the first chromosomal map of Ae. aegypti miRNAs, and compared miRNA expression profiles between a wAlbB-transinfected Ae. aegypti mosquito line and a tetracycline cleared derivative, using deep small RNA-sequencing. We found limited modulation of miRNAs in response to wAlbB infection. Several miRNAs were modulated in response to age, some of which showed greater upregulation in wAlbB-infected mosquitoes than in tetracycline cleared ones. By selectively inhibiting some differentially expressed miRNAs, we identified miR-2946-3p and miR-317-3p as effecting mosquito longevity in Wolbachia-infected mosquitoes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463151 | PMC |
http://dx.doi.org/10.1038/s41598-022-19574-x | DOI Listing |
BMC Infect Dis
January 2025
Faculty of Medicine, Center for Zoonotic and Emerging Diseases HUMRC, Universitas Hasanuddin, Makassar, Indonesia.
Background: The burden of Aedes aegypti-transmitted viruses such as dengue, chikungunya, and Zika are increasing globally, fueled by urbanization and climate change, with some of the highest current rates of transmission in Asia. Local factors in the built environment have the potential to exacerbate or mitigate transmission.
Methods: In 24 informal urban settlements in Makassar, Indonesia and Suva, Fiji, we tested children under 5 years old for evidence of prior infection with dengue, chikungunya, and Zika viruses by IgG serology.
PLoS Negl Trop Dis
January 2025
Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.
Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.
View Article and Find Full Text PDFJ Vector Borne Dis
January 2025
Department of Zoology, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka.
Background And Objectives: Salivary glands proteins but not glycoconjugates have been previously studied in mosquito vectors of human diseases. Glycoconjugates from salivary gland-derived proteins from human-feeding tick vectors can elicit hypersensitivity reactions which may also occur with mosquito bites. Protein glycoconjugate in salivary glands of the principal arboviral vector Aedes aegypti and the rapidly spreading malaria vector Anopheles stephensi were therefore investigated.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Entomology, University of California, Riverside, CA 92521.
Female mosquitoes require a vertebrate blood meal to activate reproduction, transmitting numerous devastating human diseases. Vitellogenesis is a central event of female reproduction that involves the massive production of vitellogenin (Vg) in the fat body and the maturation of ovaries. This process is controlled by the steroid hormone 20-hydroxyecdysone (20E); however, its molecular regulatory basis remains not completely understood.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
The microbiome influences critical aspects of mosquito biology and variations in microbial composition can impact the outcomes of laboratory studies. To investigate how biotic and abiotic conditions in an insectary affect the composition of the mosquito microbiome, a single cohort of Aedes aegypti eggs was divided into three batches and transferred to three different climate-controlled insectaries within the Liverpool School of Tropical Medicine. The bacterial microbiome composition was compared as mosquitoes developed, the microbiome of the mosquitoes' food sources was characterised, environmental conditions over time in each insectary were measured, and mosquito development and survival were recorded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!