Global energy spectrum of the general oceanic circulation.

Nat Commun

Department of Mechanical Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY, USA.

Published: September 2022

Advent of satellite altimetry brought into focus the pervasiveness of mesoscale eddies [Formula: see text] km in size, which are the ocean's analogue of weather systems and are often regarded as the spectral peak of kinetic energy (KE). Yet, understanding of the ocean's spatial scales has been derived mostly from Fourier analysis in small "representative" regions that cannot capture the vast dynamic range at planetary scales. Here, we use a coarse-graining method to analyze scales much larger than what had been possible before. Spectra spanning over three decades of length-scales reveal the Antarctic Circumpolar Current as the spectral peak of the global extra-tropical circulation, at ≈ 10 km, and a previously unobserved power-law scaling over scales larger than 10 km. A smaller spectral peak exists at ≈ 300 km associated with mesoscales, which, due to their wider spread in wavenumber space, account for more than 50% of resolved surface KE globally. Seasonal cycles of length-scales exhibit a characteristic lag-time of ≈ 40 days per octave of length-scales such that in both hemispheres, KE at 10 km peaks in spring while KE at 10 km peaks in late summer. These results provide a new window for understanding the multiscale oceanic circulation within Earth's climate system, including the largest planetary scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463453PMC
http://dx.doi.org/10.1038/s41467-022-33031-3DOI Listing

Publication Analysis

Top Keywords

spectral peak
12
oceanic circulation
8
planetary scales
8
scales larger
8
scales
5
global energy
4
energy spectrum
4
spectrum general
4
general oceanic
4
circulation advent
4

Similar Publications

The structure and dynamics of water at charged graphene interfaces fundamentally influence molecular responses to electric fields with implications for applications in energy storage, catalysis, and surface chemistry. Leveraging the realism of the MB-pol data-driven many-body potential and advanced path-integral quantum dynamics, we analyze the vibrational sum frequency generation (vSFG) spectrum of graphene/water interfaces under varying surface charges. Our quantum simulations reveal a distinctive dangling OH peak in the vSFG spectrum at neutral graphene, consistent with recent experimental findings yet markedly different from those of earlier studies.

View Article and Find Full Text PDF

Photo-induced multiple charge transfer resonance of Ce-MOF for SERS detection of nucleic acid.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China. Electronic address:

Background: Sensitive and accurate detection of important cancer markers MicroRNAs (miRNAs) is critical to prevent and treat disease. Among many detection techniques, surface-enhanced Raman scattering(SERS) has attracted much attention due to its advantages such as narrow spectral peak, low interference and non-destructive detection. Interestingly, non-noble metal SERS substrates show good prospects due to their outstanding spectral reproducibility and biocompatibility.

View Article and Find Full Text PDF

Self-Powered Filterless Narrowband UV Photodetection Triggered by Asymmetric Charge Carrier Generation in a Wide-Bandgap Halide Perovskite Ferroelectric.

Small

January 2025

Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China.

Narrowband photodetection with selective light detection in ultraviolet (UV) range is particularly pronounced in specialized such as targeted wavelength imaging and UV-phototherapy. In contrast to conventional strategies, ferroelectric materials with pronounced bulk photovoltaic effect (BPVE) provide a novel asymmetric carrier generation concept for achieving filterless spectrally selective photodetection. Herein, for the first time, the realization of self-powered filterless narrowband UV photodetection is demonstrated in bulk single crystals of a newly developed halide perovskite ferroelectric, 2FEAEAPbCl (2FEEPC), which exhibits a wide bandgap of 3.

View Article and Find Full Text PDF

Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).

View Article and Find Full Text PDF

Plastic waste management is one of the key issues in global environmental protection. Integrating spectroscopy acquisition devices with deep learning algorithms has emerged as an effective method for rapid plastic classification. However, the challenges in collecting plastic samples and spectroscopy data have resulted in a limited number of data samples and an incomplete comparison of relevant classification algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!