Syndrome-Specific Neuroanatomical Phenotypes in Girls With Turner and Noonan Syndromes.

Biol Psychiatry Cogn Neurosci Neuroimaging

Brain Imaging, Development and Genetics Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California. Electronic address:

Published: February 2024

Background: Turner syndrome (TS) and Noonan syndrome (NS) are distinct genetic conditions with highly similar physical and neurodevelopmental phenotypes. TS is caused by X chromosome absence, whereas NS results from genetic mutations activating the Ras-mitogen-activated protein kinase signaling pathway. Previous neuroimaging studies in individuals with TS and NS have shown neuroanatomical variations relative to typically developing individuals, a standard comparison group when initially examining a clinical group of interest. However, none of these studies included a second clinical comparison group, limiting their ability to identify syndrome-specific neuroanatomical phenotypes.

Methods: In this study, we compared the behavioral and brain phenotypes of 37 girls with TS, 26 girls with NS, and 37 typically developing girls, all ages 5 to 12 years, using univariate and multivariate data-driven analyses.

Results: We found divergent neuroanatomical phenotypes between groups, despite high behavioral similarities. Relative to the typically developing group, TS was associated with smaller whole-brain cortical surface area (p ≤ .0001), whereas NS was associated with smaller whole-brain cortical thickness (p = .013). TS was associated with larger subcortical volumes (left amygdala, p = .002; right hippocampus, p = .002), whereas NS was associated with smaller subcortical volumes (bilateral caudate, p ≤ .003; putamen, p < .001; pallidum, p < .001; right hippocampus, p = .015). Multivariate analyses also showed diverging brain phenotypes in terms of surface area and cortical thickness, with surface area outperforming cortical thickness at group separation.

Conclusions: TS and NS have syndrome-specific brain phenotypes, despite their behavioral similarities. Our observations suggest that neuroanatomical phenotypes better reflect the different genetic etiologies of TS and NS and may be superior biomarkers relative to behavioral phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305746PMC
http://dx.doi.org/10.1016/j.bpsc.2022.08.012DOI Listing

Publication Analysis

Top Keywords

neuroanatomical phenotypes
12
typically developing
12
brain phenotypes
12
associated smaller
12
surface area
12
cortical thickness
12
syndrome-specific neuroanatomical
8
phenotypes
8
phenotypes girls
8
relative typically
8

Similar Publications

Background: Individual neurobiological heterogeneity among patients with tobacco use disorder (TUD) hampers the identification of neuroimaging phenotypes.

Methods: The current study recruited 122 TUD individuals and 57 healthy controls, and obtained their 3D-T1 images. Heterogeneity through discriminative analysis (HYDRA) was applied to uncover the potential subtype of TUD where regional gray matter volume (GMV) was treated as the feature.

View Article and Find Full Text PDF

Recent genetic studies have linked numerous loci to psychiatric disorders. However, the biological pathways that connect these genetic associations to psychiatric disorders' specific pathophysiological processes are largely unclear. Endophenotypes, first defined over five decades ago, are heritable traits, independent of disease state that are associated with a disease, encompassing a broad range of neurophysiological, biochemical, endocrinological, neuroanatomical, cognitive, and neuropsychological characteristics.

View Article and Find Full Text PDF

Neuroanatomical variation in individuals with bipolar disorder (BD) has been previously described in observational studies. However, the causal dynamics of these relationships remain unexplored. We performed Mendelian Randomization of 297 structural and functional neuroimaging phenotypes from the UK BioBank and BD using genome-wide association study summary statistics.

View Article and Find Full Text PDF

Growth hormone secretagogue receptor and cannabinoid receptor type 1 intersection in the mouse brain.

Brain Struct Funct

December 2024

Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina.

The growth hormone secretagogue receptor (GHSR) and the cannabinoid receptor type 1 (CB1R) are G-protein coupled receptors highly expressed in the brain and involved in critical regulatory processes, such as energy homeostasis, appetite control, reward, and stress responses. GHSR mediates the effects of both ghrelin and liver-expressed antimicrobial peptide 2, while CB1R is targeted by cannabinoids. Strikingly, both receptors mediate their effects by acting on common brain areas and their individual roles have been well characterized.

View Article and Find Full Text PDF

The disappointment centre of the brain gets exciting: a systematic review of habenula dysfunction in depression.

Transl Psychiatry

December 2024

School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.

Background: The habenula is an epithalamic brain structure that acts as a neuroanatomical hub connecting the limbic forebrain to the major monoamine centres. Abnormal habenula activity is increasingly implicated in depression, with a surge in publications on this topic in the last 5 years. Direct activation of the habenula is sufficient to induce a depressive phenotype in rodents, suggesting a causative role in depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!