A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Linking Land Use Land Cover change to global groundwater storage. | LitMetric

Linking Land Use Land Cover change to global groundwater storage.

Sci Total Environ

Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.

Published: December 2022

Groundwater storage is facing the constant threat of over-exploitation and irreversible depletion, often attributed to agricultural and industrial usage as well as human mismanagement. While several methodologies, varying from well logs to gravity recovery data, have been successfully adopted over the years to track and mitigate groundwater loss, Land Use and Land Cover (LULC) has never been quantified to evaluate groundwater storage and variability. LULC change alters the hydrological connectivity between the surface and subsurface water. Towards this, we employed a decision tree based Machine Learning model to (a) identify hydrological and terrestrial drivers affecting groundwater resources, (b) predict shallow and deep groundwater variability, (c) rank the drivers according to their impact on groundwater distribution, and (d) understand groundwater distribution as a function of LULC change. The model was developed globally, and then extended to basinal scale observations in the Indus, Ganga and Brahmaputra rivers of the Indian subcontinent. Model output has helped to (a) compute the 'infiltration index' associated with each Land Cover, (b) equate cropland expansion among the three basins with shallow and deep groundwater storage and (c) link LULC-groundwater change to crop yield. RCP 2.6 crop yield estimates for the 21 century proves detrimental to Indian food and freshwater security, given the strong coupling of groundwater-LULC among the three basins and how Land Cover change translates to groundwater storage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158618DOI Listing

Publication Analysis

Top Keywords

groundwater storage
20
land cover
16
groundwater
10
land land
8
cover change
8
lulc change
8
shallow deep
8
deep groundwater
8
groundwater distribution
8
three basins
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!