Tick abundance is an essential demographic parameter to infer tick-borne pathogen transmission risks. Spatiotemporal patterns of tick abundance are heterogeneous, so its determinants at small spatial scales need to be understood to reduce their negative effects on hosts. Current knowledge of these determinants is scarce, especially in Mediterranean environments, limiting the possibilities for designing efficient tick control strategies. With the goal of unravelling tick abundance determinants and informing new tick management strategies, we estimated tick burdens on 1965 wild ungulates in Doñana National Park, Spain, annually between 2010 and 2020. Under the hypothesis of a predominant host influence on tick abundance, we modelled the burdens of Rhipicephalus annulatus, Hyalomma lusitanicum, and Ixodes ricinus with relevant predictors grouped into four factors: i) environment; ii) host population; iii) host individual; and iv) land-use. Generalized linear mixed models with a zero-inflated negative binomial distribution were built. Additionally, we analysed the differential contribution to abundance of each factor by deviance partitioning. We finally estimated the similarity in the environmental space of tick species by analysing their niche overlap with the environmental principal component analysis method. Our work hypothesis was confirmed for R. annulatus and H. lusitanicum, but we found that tick abundance at a fine spatial scale is jointly driven by multiple drivers, including all four factors considered in this study. This result points out that understanding the demography of ticks is a complex multifactorial issue, even at small spatial scales. We found no niche differences between the three tick species at the study spatial scale, thus showing similar host and environmental dependencies. Overall results identify that host aggregation areas displaying environmentally favourable traits for ticks are relevant tick and vector-borne pathogen transmission hotspots. Our findings will facilitate the design of new strategies to reduce the negative effects of tick parasitism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.158633 | DOI Listing |
PLoS Pathog
December 2024
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.
Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.
View Article and Find Full Text PDFPathogens
December 2024
Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
Tick-borne diseases (TBDs) pose a growing threat to companion animals, especially dogs, due to the increasing abundance of tick populations in Europe, driven by climate change, urbanization, and the mobility of humans and animals. This study aimed to assess the prevalence of tick-borne pathogens in clinically ill dogs suspected of having developed TBDs during the autumn-winter season, as well as to detect pathogens in ticks collected during the same period in the Warmian-Masurian Voivodeship in Poland. A total of 30 dogs with clinical symptoms of babesiosis and 45 ticks from dogs were acquired for this study.
View Article and Find Full Text PDFPathogens
December 2024
Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Republic of Korea.
Tick-borne diseases are a public health problem and a significant burden on the livestock industry. The seasonal abundance of ticks and tick-borne pathogens strongly correlates with the prevalence of these diseases. To investigate the seasonal variation in ticks and tick-borne pathogens, ticks were collected from Gangwon State, Korea, and the tick-borne pathogens , , , and were examined.
View Article and Find Full Text PDFEctothermic arthropods, like ticks, are sensitive indicators of environmental changes, and their seasonality plays a critical role in tick-borne disease dynamics in a warming world. Juvenile tick phenology, which influences pathogen transmission, may vary across climates, with longer tick seasons in cooler climates potentially amplifying transmission. However, assessing juvenile tick phenology is challenging in climates where desiccation pressures reduce the time ticks spend seeking blood meals.
View Article and Find Full Text PDFTicks Tick Borne Dis
January 2025
INRAE, Oniris, BIOEPAR, 44300 Nantes, France. Electronic address:
Equine piroplasmosis is a worldwide tick-borne disease caused by the parasites Theileria equi sensu lato and Babesia caballi, with significant economic and sanitary consequences. These two parasites are genetically variable, with a potential impact on diagnostic accuracy. Our study aimed to evaluate the frequency of asymptomatic carriers of these parasites in France and describe the circulating genotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!