Microplastics (<5 mm) are a threat to marine biodiversity however their effects on animal cognition and behaviour are unclear. We investigated whether microplastic exposure affects shell selection behaviour and motivation in the common European hermit crab, Pagurus bernhardus. Subjects were maintained for 5 days in tanks containing either: polyethylene microplastic spheres (n = 40), or no plastic (n = 40). They were then placed in low-quality shells and presented with an alternative high-quality shell. When they first touched the high-quality shell, the hermit crabs were startled using visual and aural stimuli. We recorded the post-startle latency to re-contact the high-quality shell, quantifying motivation to explore and acquire a better shell. Plastic-exposed females were more likely to select the high-quality shell than control females. As hypothesised, female hermit crabs had longer initial contact latencies, startle durations, and shell entry latencies than males. We also found an interaction effect on shell investigation duration: females from the control treatment spent longer investigating the high-quality shell compared to males. This was absent in the microplastic treatment with females behaving similar to males. This controlled study serves as a starting point to investigate the effects of microplastics and sex differences on behaviour when under predatory threat, and demonstrated sex dependent sensitivity to an environmental pollutant of global concern.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158576DOI Listing

Publication Analysis

Top Keywords

microplastic exposure
4
exposure sex
4
sex influence
4
influence shell
4
shell selection
4
selection motivation
4
motivation common
4
common european
4
european hermit
4
hermit crab
4

Similar Publications

Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation.

Environ Sci Pollut Res Int

January 2025

CERENA - Civil Engineering Research and Innovation for Sustainability, IST-ID, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal.

Polypropylene (PP) disposable face masks (DFMs) are essential for limiting airborne infectious diseases. This study examines the behavior of DFMs under three scenarios: (i) exposure to the natural environment, (ii) simulated high-energy aquatic environments through an abrasion test, and (iii) incorporation into cement-based mortars. In the natural weathering experiment, after 117 days, the DFMs exhibited photodegradation, resulting in chemical alterations in carbonyl and hydroxyl groups.

View Article and Find Full Text PDF

The effects of microplastic (MP) accumulation in freshwaters on organisms and ecosystem functions are poorly understood, as are the roles of MP particle properties in regulating these effects. In freshwater microcosms, we quantified variation in microbial communities and ecosystem functions and compared effects of MP concentration (0, 1000, 50000 particles/kg), shape (sphere, fragment, fibre), and polymer (polyethylene, polyethylene terephthalate, polypropylene, polystyrene) with those of a model invertebrate consumer (Chironomus riparius). We detected multiple effects of specific MP properties, especially associated with MP fragments and fibres, and the polymer polypropylene.

View Article and Find Full Text PDF

The physical abrasion of plastics from simple everyday entered the food chain, with associated risks recently emphasized. Although many studies have reported the adverse effects of microplastics (MPs) on human, the reproductive implications of continuous exposure to physically abraded polyethylene terephthalate (PET)-MPs remain unexplored. Ingestion of physically abraded PET-MPs (size range: 50-100 µm) in mice from 5 to 34 weeks of age at an annual intake relevant dose of MPs (5 mg week) significantly impaired male reproductive function.

View Article and Find Full Text PDF

After being exposed, microplastics mostly bioaccumulated in guts and gills of fish, then, through circulation, spread and bioaccumulated in other tissues. Circulatory system of fish is impacted by the microplastic bioaccumulation in their tissues, influencing a number of hematological indices that are connected with immunity, osmotic pressure, blood clotting, molecular transport and fat metabolism. Variables like size, dose, duration, food consumption and species, all affect the bioaccumulation and toxicity of the microplastic, rather than the exposure routes.

View Article and Find Full Text PDF

Accumulation of nanoplastics (NPs) poses a severe threat to the homeostasis of the internal environment in patients with chronic diseases. The effects of NP contamination on health in chronically ill populations must urgently be elucidated. In this study, NPs injected via the tail vein were distributed in the brain and internal organs in a mouse model of chronic internal carotid occlusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!