L-buthionine sulfoximine encapsulated hollow calcium peroxide as a chloroperoxidase nanocarrier for enhanced enzyme dynamic therapy.

Biomaterials

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China. Electronic address:

Published: October 2022

The appropriate design of multifunctional nanocarriers for chloroperoxidase (CPO) delivery and the simultaneous improvement of the efficiency of enzyme dynamic therapy (EDT) remain significant challenges. Herein, we report a facile one-step route to obtain a multifunctional nanocarrier for the formation of sodium hyaluronate-modified hollow calcium peroxide spheres with encapsulated L-buthionine sulfoximine (BSO), followed by delivery of CPO for enhanced EDT. After effective accumulation at the tumor sites, the nanocomposite rapidly decomposes and releases Ca, BSO molecules, CPO, and concurrently generates a large volume of hydrogen peroxide (HO) in the endogenous tumor microenvironment (TME). BSO molecules inhibit the biosynthesis of glutathione (GSH) by inactivating γ-glutamyl cysteine synthetase. Due to BSO-induced GSH depletion and self-supply of HO, the EDT efficiency of CPO was significantly enhanced to achieve high tumor therapy efficiency. Additionally, overloaded Ca caused mitochondrial damage and amplified the oxidative stress. Moreover, calcification resulted from the unbalanced calcium transport channel caused by enhanced oxidative stress, accelerating tumor apoptosis and improving the efficacy of computed tomography (CT) imaging visual tumor therapy. This simple and efficient design for multifunctional nanocomposites will likely take an important place in the field of combined tumor therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2022.121746DOI Listing

Publication Analysis

Top Keywords

l-buthionine sulfoximine
8
hollow calcium
8
calcium peroxide
8
enzyme dynamic
8
dynamic therapy
8
design multifunctional
8
cpo enhanced
8
bso molecules
8
tumor therapy
8
oxidative stress
8

Similar Publications

Cotargeting of thioredoxin 1 and glutamate-cysteine ligase in both imatinib-sensitive and imatinib-resistant CML cells.

Biochem Pharmacol

January 2025

Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, RP China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China. Electronic address:

Chronic myeloid leukemia (CML) is a type of malignancy characterized by harboring the oncogene Bcr-Abl, which encodes the constitutively activated tyrosine kinase BCR-ABL. Although tyrosine kinase inhibitors targeting BCR-ABL have revolutionized CML therapy, native and acquired drug resistance commonly remains a great challenge. Thioredoxin 1 (Trx1) and glutamate-cysteine ligase (GCL), which are two major antioxidants that maintain cellular redox homeostasis, are potential targets for cancer therapy and overcoming drug resistance.

View Article and Find Full Text PDF

Glioblastoma Multiforme (GBM) is one of the most aggressive types of brain tumor. GBM can modulate glutathione (GSH) levels and regulate cellular redox state, which can explain its high resistance to chemotherapeutic agents. Photodynamic therapy (PDT) is a selective, nontoxic, and minimally invasive treatment approved for many types of cancer.

View Article and Find Full Text PDF

The chemotherapeutic drug doxorubicin (DOX) has been widely used for treating solid tumors attributed to its antiproliferative effectiveness; however, its clinical use is limited due to side effects, including cardiotoxicity, myelosuppression, and drug resistance. Combining DOX with buthionine sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, showed promising results in overcoming these adverse effects, potentially reducing the required DOX dose while maintaining efficacy. The aim of the present study was to examine the effects of different concentrations of BSO and DOX, both individually and in combination, utilizing B16/F10 (murine melanoma), SNB-19 (human glioblastoma), S180 (murine sarcoma), and SVEC4-10 (murine endothelial) cell lines.

View Article and Find Full Text PDF

As a recently discovered form of regulated cell death, ferroptosis has attracted much attention in the field cancer therapy. However, achieving considerably enhanced efficacy is often restricted by the overexpression of endogenous glutathione (GSH) in tumor microenvironment (TME). In this work, we report a ferroptosis-inducing strategy of GSH depletion and reactive oxygen species (ROS) generation based on a biodegradable copper-doped calcium phosphate (CaP) with L-buthionine sulfoximine (BSO) loading (denoted as BSO@CuCaP-LOD, BCCL).

View Article and Find Full Text PDF

DLBCL cells with ferroptosis morphology can be detected with a deep convolutional neural network.

Biomed Pharmacother

January 2025

Medical Research Center, Oulu University Hospital, Oulu, Finland; Department of Internal Medicine, Länsi-Pohja Central Hospital, Kemi, Finland; Biomedicine and Internal Medicine Research Unit, University of Oulu, Oulu, Finland.

It has been demonstrated that diffuse large B-cell lymphoma (DLBCL) is especially sensitive to ferroptosis. Currently, confirming the presence of ferroptosis requires flow cytometry, which is a time consuming and labor-intensive task. Blistering of the cell membrane has been shown to be a ferroptosis-specific morphological change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!