Identifying the structure of the AlO/Al interface is important for advancing its performance in a wide range of applications, including microelectronics, corrosion barriers, and superconducting qubits. However, beyond the study of a few select terminations of the interface using computational methods, and top-down, laterally averaged spectroscopic and microscopic analyses, the explicit structure of the interface and the initial stages of propagation of the interface into the metal are largely unresolved. In this study, we utilize ab initio grand canonical Monte Carlo to perform a physically motivated, unbiased exploration of the interfacial composition and configuration space. We find that at equilibrium, the interface is atomically sharp with aluminum vacancies and propagates in a layer-by-layer fashion, with aluminum excess in the oxide layer at the interfacial plane. Oxygen incorporation, aluminum vacancy formation, and aluminum vacancy annihilation are the building blocks of AlO formation at the interface. The localized interfacial mid-gap states from under-coordinated aluminum atoms from the oxide and the immediate depletion of aluminum states near the Fermi level upon oxygen incorporation prevent oxygen dissolution ahead of the interface front and result in the layer-by-layer propagation of the interface. This is in sharp contrast to the ZrO/Zr system, which forms interfacial sub-oxides, and also explains the favorable self-healing nature of the AlO/Al system. The occupied interfacial mid-gap states also increase the calculated n-type Schottky barrier heights. Additionally, we identify that interfacial aluminum core-level shifts linearly depend on the aluminum coordination number, whereas interfacial oxygen core-level shifts depend on long-range ordering at the interface. The detailed geometric and electronic insights into the interface structure and evolution expand our understanding of this fundamental interface and have important implications for the engineering and design of AlO/Al-based corrosion coatings with enhanced barrier properties, controllable transistor technologies, and noise-free superconducting qubits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c08706 | DOI Listing |
J Neural Eng
January 2025
Department of Neuroscience, Northwestern University, 303 East Chicago Ave, Chicago, Illinois, 60611, UNITED STATES.
Objective: Creating an intracortical brain-computer interface (iBCI) capable of seamless transitions between tasks and contexts would greatly enhance user experience. However, the nonlinearity in neural activity presents challenges to computing a global iBCI decoder. We aimed to develop a method that differs from a globally optimized decoder to address this issue.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
Organic solar cells (OSCs) have recently achieved efficiencies of >20% in single-junction unit cells owing to rapid advancements in materials and device technologies. Large-area OSCs face several challenges that adversely affect their efficiency compared to small unit cells. These challenges include increased resistance loads derived from their larger dimensions, as well as limitations related to morphology, miscibility, and crystallinity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.
Deuterated compounds have broad applications across various fields, with dehalogenative deuteration serving as an efficient method to obtain these molecules. However, the diverse electronic structures of active sites in the heterogeneous system and the limited recyclability in the homogeneous system significantly hinder the advancement of dehalogenative deuteration. In this study, we present a catalyst composed of copper single-atom sites anchored within an ordered mesoporous nitrogen-doped carbon matrix, synthesized via a mesopore confinement method.
View Article and Find Full Text PDFLangmuir
January 2025
Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
The mechanism of the emulsion polymerization of styrene to polystyrene nanoparticles (PSNPs) remains a subject of debate. Herein, a series of reaction parameters with different surfactant concentrations, monomer contents, temperatures, and equilibration times were investigated to understand the formation mechanism of PSNPs, which demonstrate a correlation between the properties of PSNPs and the mesostructure of the premix. Cooling the model systems with self-emulsifying nanodroplets (SENDs) in the early reaction stages resulted in the hollow polystyrene spheres (H-PSSs), ruptured PSNPs, and dandelion-like PSNPs, further indicating that the oil nanodroplets are the key sites for the formation of PSNPs.
View Article and Find Full Text PDFLangmuir
January 2025
CNNFM Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563 Tehran, Iran.
This study investigates the impact of cell dynamics on mixing efficiency within a microfluidic droplet, emphasizing the relationship between cell motion, deformability, and resultant asymmetry in velocity and concentration fields. Simulations were conducted for droplets containing encapsulated cells at varying Peclet numbers ( = 100-800) and coupling constants ( = 0.0025, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!