AI Article Synopsis

  • Alkaline water electrolysis can be improved by understanding and controlling extrinsic factors like electrode properties instead of just focusing on electrocatalytic activity.
  • Researchers modified electrode designs using 3D printing and metal deposition to enhance performance, discovering that factors like wettability and surface roughness significantly affect electrochemical results.
  • The study confirmed that optimized electrode geometry and controlled bubble release can lead to decreased overpotential and improved efficiency in hydrogen and oxygen production, showcasing the importance of tailored electrode architectures for effective testing of electrocatalytic materials.

Article Abstract

Alkaline water electrolysis, a promising technology for clean energy storage, is constrained by extrinsic factors in addition to intrinsic electrocatalytic activity. To begin to compare between catalytic materials for electrolysis applications, these extrinsic factors must first be understood and controlled. Here, we modify extrinsic electrode properties and study the effects of bubble release to examine how the electrode and surface design impact the performance of water electrolysis. We fabricate robust and cost-effective electrodes through a sequential three-dimensional (3D) printing and metal deposition procedure. Through a systematic assessment of the deposition procedure, we confirm the close relationship between extrinsic electrode properties (, wettability, surface roughness, and electrochemically active surface area) and electrochemical performance. Modifying the electrode geometry, size, and electrolyte flow rate results in an overpotential decrease and different bubble diameters and lifetimes for the hydrogen (HER) and oxygen evolution reactions (OER). Hence, we demonstrate the essential role of the electrode architecture and forced electrolyte convection on bubble release. Additionally, we confirm the suitability of ordered, Ni-coated 3D porous structures by evaluating the HER/OER performance, bubble dissipation, and long-term stability. Finally, we utilize the 3D porous electrode as a support for studying a benchmark NiFe electrocatalyst, confirming the robustness and effectiveness of 3D-printed electrodes for testing electrocatalytic materials while extrinsic properties are precisely controlled. Overall, we demonstrate that tailoring electrode architectures and surface properties result in precise tuning of extrinsic electrode properties, providing more reproducible and comparable conditions for testing the efficiency of electrode materials for water electrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c12579DOI Listing

Publication Analysis

Top Keywords

water electrolysis
12
extrinsic electrode
12
electrode properties
12
electrode
9
3d-printed electrodes
8
extrinsic factors
8
bubble release
8
deposition procedure
8
extrinsic
6
properties
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!