The rapid advancement of transmission electron microscopy has resulted in revolutions in a variety of fields, including physics, chemistry, and materials science. With single-atom resolution, 3D information of each atom in nanoparticles is revealed, while 4D electron tomography is shown to capture the atomic structural kinetics in metal nanoparticles after phase transformation. Quantitative measurements of physical and chemical properties such as chemical coordination, defects, dislocation, and local strain have been made. However, due to the incompatibility of high dose rate with other ultrathin morphologies, such as nanowires, atomic electron tomography has been primarily limited to quasi-spherical nanoparticles. Herein, the 3D atomic structure of a complex core-shell nanowire composed of an ultrathin Boerdijk-Coxeter-Bernal (BCB) core nanowire and a noble metal thin layer shell deposited on the BCB nanowire surface is discovered. Furthermore, it is demonstrated that a new superthin noble metal layer deposition on an ultrathin BCB nanowire could mitigate electron beam damage using an in situ transmission electron microscope and atomic resolution electron tomography. The colloidal coating method developed for electron tomography can be broadly applied to protect the ultrathin nanomaterials from electron beam damage, benefiting both the advanced material characterizations and enabling fundamental in situ mechanistic studies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202203310DOI Listing

Publication Analysis

Top Keywords

electron tomography
20
ultrathin boerdijk-coxeter-bernal
8
electron
8
transmission electron
8
noble metal
8
bcb nanowire
8
electron beam
8
beam damage
8
tomography
5
ultrathin
5

Similar Publications

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

ModeHunter is a modular Python software package for the simulation of 3D biophysical motion across spatial resolution scales using modal analysis of elastic networks. It has been curated from our in-house Python scripts over the last 15 years, with a focus on detecting similarities of elastic motion between atomic structures, coarse-grained graphs, and volumetric data obtained from biophysical or biomedical imaging origins, such as electron microscopy or tomography. With ModeHunter, normal modes of biophysical motion can be analyzed with various static visualization techniques or brought to life by dynamics animation in terms of single or multimode trajectories or decoy ensembles.

View Article and Find Full Text PDF

Background: Giant hydronephrosis as an rare condition is often caused by chronic ureteral obstruction. Nephroplication is a crucial procedure to improve urinary drainage in the kidney-sparing surgery for patients with giant hydronephrosis. However, traditional nephroplication via suturing kidney has technical difficulty and many potential risks.

View Article and Find Full Text PDF

Background: Synapse loss represents the closest correlate of cognitive decline in Alzheimer’s Disease (AD). Standard microscopy, due to increased diffraction of light with tissue depth, imposes a limit on axial resolution extending to ∼ 700nm. , developed by Micheva & Smith (2007), extends this axial limit via physical sectioning of resin‐embedded tissue into ribbons of 70nm contiguous sections that are serially imaged and reconstructed into 3D volumes; thus, allowing for nanometric synaptic puncta to be resolved at the mesoscale.

View Article and Find Full Text PDF

Pt-CeO nanosponges (1 wt% Pt) with high surface area (113 m g), high pore volume (0.08 cm g) and small-sized Pt nanoparticles (1.8 ± 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!