Background: Severe acute respiratory syndrome caused by a novel coronavirus 2 (SARS-CoV-2) has infected more than 18 million people worldwide. The activation of endothelial cells is a hallmark of signs of SARS-CoV-2 infection that includes altered integrity of vessel barrier and endothelial inflammation.
Objectives: Pulmonary endothelial activation is suggested to be related to the profound neutrophil elastase (NE) activity, which is necessary for sterilization of phagocytosed bacterial pathogens. However, unopposed activity of NE increases alveolocapillary permeability and extracellular matrix degradation. The uncontrolled protease activity of NE during the inflammatory phase of lung diseases might be due to the resistance of exosome associated NE to inhibition by alpha-1 antitrypsin.
Method: 31 subjects with a diagnosis of SARS-CoV2 infection were recruited in the disease group and samples from 30 voluntaries matched for age and sex were also collected for control.
Results: We measured the plasma levels of exosome-associated NE in SARS-CoV-2 patients which, were positively correlated with sign of endothelial damage in those patients as determined by plasma levels of LDH. Notably, we also found strong correlation with plasma levels of alpha-1 antitrypsin and exosome-associated NE in SARS-CoV-2 patients. Using macrovascular endothelial cells, we also observed that purified NE activity is inhibited by purified alpha-1 antitrypsin while, NE associated with exosomes are resistant to inhibition and show less sensitivity to alpha-1 antitrypsin inhibitory activity, in vitro.
Conclusions: Our results point out the role of exosome-associated NE in exacerbation of endothelial injury in SARS-CoV-2 infection. We have demonstrated that exosome-associated NE could be served as a new potential therapeutic target of severe systemic manifestations of SARS-CoV-2 infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462798 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274427 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!