A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experimental validation of a subject-specific finite element model of lumbar spine segment using digital image correlation. | LitMetric

AI Article Synopsis

  • Pathologies like cancer metastasis and osteoporosis alter vertebral bone mechanics, increasing fragility fracture risk.
  • A patient-specific model using diagnostic images can aid clinicians in determining appropriate therapies after validation and uncertainty quantification.
  • This study outlines the creation of such models using quantitative CT images, demonstrating their effectiveness in predicting vertebral displacements under loading conditions with high accuracy (R² > 0.9).

Article Abstract

Pathologies such as cancer metastasis and osteoporosis strongly affect the mechanical properties of the vertebral bone and increase the risk of fragility fractures. The prediction of the fracture risk with a patient-specific model, directly generated from the diagnostic images of the patient, could help the clinician in the choice of the correct therapy to follow. But before such models can be used to support any clinical decision, their credibility must be demonstrated through verification, validation, and uncertainty quantification. In this study we describe a procedure for the generation of such patient-specific finite element models and present a first validation of the kinematics of the spine segment. Quantitative computed tomography images of a cadaveric lumbar spine segment presenting vertebral metastatic lesions were used to generate the model. The applied boundary conditions replicated a specific experimental test where the spine segment was loaded in compression-flexion. Model predictions in terms of vertebral surface displacements were compared against the full-field experimental displacements measured with Digital Image Correlation. A good agreement was obtained from the local comparison between experimental data and simulation results (R2 > 0.9 and RMSE% <8%). In conclusion, this work demonstrates the possibility to apply the developed modelling pipeline to predict the displacement field of human spine segment under physiological loading conditions, which is a first fundamental step in the credibility assessment of these clinical decision-support technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462677PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272529PLOS

Publication Analysis

Top Keywords

spine segment
16
finite element
8
lumbar spine
8
digital image
8
image correlation
8
experimental
4
experimental validation
4
validation subject-specific
4
subject-specific finite
4
model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!