Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Computer vision syndrome causes vision problems and discomfort mainly due to dry eye. Several studies show that dry eye in computer users is caused by a reduction in the blink rate and an increase in the prevalence of incomplete blinks. In this context, this article introduces Eye-LRCN, a new eye blink detection method that also evaluates the completeness of the blink. The method is based on a long-term recurrent convolutional network (LRCN), which combines a convolutional neural network (CNN) for feature extraction with a bidirectional recurrent neural network that performs sequence learning and classifies the blinks. A Siamese architecture is used during CNN training to overcome the high-class imbalance present in blink detection and the limited amount of data available to train blink detection models. The method was evaluated on three different tasks: blink detection, blink completeness detection, and eye state detection. We report superior performance to the state-of-the-art methods in blink detection and blink completeness detection, and remarkable results in eye state detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2022.3202643 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!