Physical activity recognition in patients with Parkinson's Disease (PwPD) is challenging due to the lack of large-enough and good quality motion data for PwPD. A common approach to this obstacle involves the use of models trained on better quality data from healthy patients. Models can struggle to generalize across these domains due to motor complications affecting the movement patterns in PwPD and differences in sensor axes orientations between data. In this paper, we investigated the generalizability of a deep convolutional neural network (CNN) model trained on a young, healthy population to PD, and the role of data augmentation on alleviating sensor position variability. We used two publicly available healthy datasets - PAMAP2 and MHEALTH. Both datasets had sensor placements on the chest, wrist, and ankle with 9 and 10 subjects, respectively. A private PD dataset was utilized as well. The proposed CNN model was trained on PAMAP2 in k-fold cross-validation based on the number of subjects, with and without data augmentation, and tested directly on MHEALTH and PD data. Without data augmentation, the trained model resulted in 48.16% accuracy on MHEALTH and 0% on the PD data when directly applied with no model adaptation techniques. With data augmentation, the accuracies improved to 87.43% and 44.78%, respectively, indicating that the method compensated for the potential sensor placement variations between data. Clinical Relevance- Wearable sensors and machine learning can provide important information about the activity level of PwPD. This information can be used by the treating physician to make appropriate clinical interventions such as rehabilitation to improve quality of life.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871181DOI Listing

Publication Analysis

Top Keywords

data augmentation
16
cnn model
12
model trained
12
data
11
activity recognition
8
motion data
8
mhealth data
8
model
5
trained
5
recognition parkinson's
4

Similar Publications

Single-cell RNA sequencing (scRNA-seq) offers remarkable insights into cellular development and differentiation by capturing the gene expression profiles of individual cells. The role of dimensionality reduction and visualization in the interpretation of scRNA-seq data has gained widely acceptance. However, current methods face several challenges, including incomplete structure-preserving strategies and high distortion in embeddings, which fail to effectively model complex cell trajectories with multiple branches.

View Article and Find Full Text PDF

Dynamic Importance of Genomic and Clinical Risk for Coronary Artery Disease Over the Life Course.

Circ Genom Precis Med

January 2025

Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston. (S.M.U., K.P., B.T., A.C.F., P.N.).

Background: Earlier identification of high coronary artery disease (CAD) risk individuals may enable more effective prevention strategies. However, existing 10-year risk frameworks are ineffective at earlier identification. We sought to understand how the variable importance of genomic and clinical factors across life stages may significantly improve lifelong CAD event prediction.

View Article and Find Full Text PDF

The processing of LiDAR point cloud data is of critical importance in the context of forest resource surveys, as well as representing a pivotal element in the realm of forest physiological and ecological studies.Nonetheless, conventional denoising algorithms frequently exhibit deficiencies with regard to adaptability and denoising efficacy, particularly when employed in relation to disparate datasets.To address these issues, this study introduces DEN4, an unsupervised, deep learning-based point cloud denoising algorithm designed to improve the accuracy of single tree segmentation in LiDAR point clouds.

View Article and Find Full Text PDF

Limited evidence to support demineralized bone matrix in foot and ankle surgical procedures: A systematic review.

World J Orthop

January 2025

Department of Orthopedic Surgery, NYU Langone Health, New York, NY 10002, United States.

Background: Demineralized bone matrix (DBM) is a commonly utilized allogenic bone graft substitute to promote osseous union. However, little is known regarding outcomes following DBM utilization in foot and ankle surgical procedures.

Aim: To evaluate the clinical and radiographic outcomes following DBM as a biological adjunct in foot and ankle surgical procedures.

View Article and Find Full Text PDF

Evaluating the Immunogenicity Risk of Protein Therapeutics by Augmenting T Cell Epitope Prediction with Clinical Factors.

AAPS J

January 2025

Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, California, USA.

Protein-based therapeutics may elicit undesired immune responses in a subset of patients, leading to the production of anti-drug antibodies (ADA). In some cases, ADAs have been reported to affect the pharmacokinetics, efficacy and/or safety of the drug. Accurate prediction of the ADA response can help drug developers identify the immunogenicity risk of the drug candidates, thereby allowing them to make the necessary modifications to mitigate the immunogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!