A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tebufenozide has limited direct effects on simulated aquatic communities. | LitMetric

Tebufenozide has limited direct effects on simulated aquatic communities.

Ecotoxicology

Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, ON, Canada.

Published: October 2022

The use of insecticides to control undesirable pest species in forestry has undergone a shift from broad spectrum to narrow spectrum insecticides to reduce the risk of effects on non-target species. However, there is still risk of direct effects on non-target species as some insecticides function as hormone mimics, or through indirect pathways as the insecticide is broken down in the environment. Tebufenozide, an ecdysone hormone mimic, is the active ingredient in insecticides used in a variety of large scale pest control programs. An oft cited reason for the safety of Tebufenozide is that it is rapidly broken down in the environment by microbes. We investigated the potential non-target effects of two Tebufenozide formulations used in Canada, Mimic 240LV and Limit 240, on aquatic communities using an outdoor mesocosm experiment. We focus on direct effects on amphibian larvae (wood frog, Rana sylvaticus), zooplankton communities, and effects on biofilm and phytoplanktonic microbial communities that could arise from either direct toxicity, or from breaking down the insecticide as a nutrient and/or carbon source. There was limited evidence for direct effects on amphibian larvae or zooplankton communities. There were small but non-significant shifts in biofilm microbial communities responsible for nutrient cycling. Beta diversity in the plankton community was slightly higher among tanks treated with insecticide indicating a community dispersion/disbiosis effect. Overall, we found limited evidence of negative effects, however, subtle changes to microbial communities did occur and could indicate changes to ecosystem function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529748PMC
http://dx.doi.org/10.1007/s10646-022-02582-yDOI Listing

Publication Analysis

Top Keywords

direct effects
16
microbial communities
12
effects
8
aquatic communities
8
effects non-target
8
non-target species
8
broken environment
8
effects amphibian
8
amphibian larvae
8
zooplankton communities
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!