Mi-msp10 and Mi-msp23 effector genes play a significant role during Meloidogyne incognita parasitism on Arabidopsis roots. The role of these genes was confirmed by demonstrating the decrease of the level of susceptibility of Arabidopsis by the silencing of Mi-msp10 and Mi-msp23 genes using HD-RNAi technology. Root-knot nematodes (RKNs) are the most damaging pathogens severely affecting global food production. The sustainable options to minimize menace of nematode populations through economically feasible measures are limited. Thus, the development of innovative and target-specific strategies that aid in their management is imperative. RNAi technology has emerged as a sustainable and target-specific alternative to control phytonematodes. Here, we characterized two novel subventral gland and dorsal gland-specific effectors, Mi-msp10 and Mi-msp23, to determine their potential effectiveness in controlling M. incognita. Comparative developmental profiling using qRT-PCR revealed higher expression of both effectors in the adult nematode female. Furthermore, functional evaluation of Mi-msp10 and Mi-msp23 dsRNA cassettes was performed using host-delivered RNAi (HD-RNAi) in Arabidopsis. The transgenic lines were examined against M. incognita, and the phenotypic effect of HD-RNAi was evident with a 61% and 51% reduction in gall formation in the Mi-msp10 and Mi-msp23 RNAi lines, respectively. A significant drop in the nematode adult females by 59% for Mi-msp10 and 49% for Mi-msp23-RNAi lines was observed. Similarly, production in egg masses decreased significantly by 76% (Mi-msp10) and 60% (Mi-msp23) for the RNAi lines, which eventually decreased the reproductive factor by 92% and 75%, respectively. The gene expression analysis showed a significant decrease in the transcript level by up to 72% (Mi-msp10) and 66% (Mi-msp23) in M. incognita females feeding on RNAi lines, providing further evidence of effective gene silencing. Overall, our findings provide useful information and support further development of RNAi-based strategies to control M. incognita.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-022-03977-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!