Aims/hypothesis: Accumulated data suggest that infections in early life contribute to the development of type 1 diabetes. Using data from the Trial to Reduce IDDM in the Genetically at Risk (TRIGR), we set out to assess whether children who later developed diabetes-related autoantibodies and/or clinical type 1 diabetes had different exposure to infections early in life compared with those who did not.
Methods: A cohort of 2159 children with an affected first-degree relative and HLA-conferred susceptibility to type 1 diabetes were recruited between 2002 and 2007 and followed until 2017. Infections were registered prospectively. The relationship between infections in the first year of life and the development of autoantibodies or clinical type 1 diabetes was analysed using univariable and multivariable Cox regression models. As this study was exploratory, no adjustment was made for multiple comparisons.
Results: Adjusting for HLA, sex, breastfeeding duration and birth order, those who had seven or more infections during their first year of life were more likely to develop at least one positive type 1 diabetes-related autoantibody (p=0.028, HR 9.166 [95% CI 1.277, 65.81]) compared with those who had no infections. Those who had their first viral infection aged between 6 and 12 months were less likely to develop at least one positive type 1 diabetes-related antibody (p=0.043, HR 0.828 [95% CI 0.690, 0.994]) or multiple antibodies (p=0.0351, HR 0.664 [95% CI 0.453, 0.972]). Those who had ever had an unspecified bacterial infection were more likely to develop at least one positive type 1 diabetes-related autoantibody (p=0.013, HR 1.412 [95% CI 1.075, 1.854]), to develop multiple antibodies (p=0.037, HR 1.652 [95% CI 1.030, 2.649]) and to develop clinical type 1 diabetes (p=0.011, HR 2.066 [95% CI 1.182, 3.613]).
Conclusions/interpretation: We found weak support for the assumption that viral infections early in life may initiate the autoimmune process or later development of type 1 diabetes. In contrast, certain bacterial infections appeared to increase the risk of both multiple autoantibodies and clinical type 1 diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630400 | PMC |
http://dx.doi.org/10.1007/s00125-022-05786-3 | DOI Listing |
Chem Biodivers
January 2025
Gannan Medical University, Depatment of Medicinal Chemistry, Gannan Medical University, 341000, Ganzhou, CHINA.
Extracting natural active ingredients from plants is an effective way to develop and screen modern drugs. Psoralea corylifolia is a leguminous plant whose seeds have long been used as a Traditional Chinese Medicine to treat psoriasis, rheumatism, dermatitis, and other diseases. To date, several main compounds, including coumarins, flavonoids, monoterpene phenols, and benzofurans, have been identified from the seeds of Psoralea corylifolia.
View Article and Find Full Text PDFDiabetes Care
January 2025
Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA.
Objective: We investigated associations between per- and polyfluoroalkyl substances (PFAS) and changes in diabetes indicators from pregnancy to 12 years after delivery among women with a history of gestational diabetes mellitus (GDM).
Research Design And Methods: Eighty Hispanic women with GDM history were followed from the third trimester of pregnancy to 12 years after delivery. Oral and intravenous glucose tolerance tests were conducted during follow-up.
Diabetes
January 2025
School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.
Increasing evidence suggests that individuals infected with Coronavirus disease 2019 (COVID-19) are at a higher risk of developing type 2 diabetes (T2D) compared to those who are not infected. However, the mechanisms underlying this relationship remain poorly understood. In this study, we aimed to systematically evaluate the mediating roles of 3,283 plasma proteins in the link between COVID-19 susceptibility and T2D by conducting proteome-wide Mendelian randomization (MR) analyses.
View Article and Find Full Text PDFDrugs
January 2025
Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA.
Type 1 diabetes mellitus (T1DM) is characterized by the progressive, autoimmune-mediated destruction of β cells. As such, restoring immunoregulation early in the disease course is sought to retain endogenous insulin production. Nevertheless, in the more than 100 years since the discovery of insulin, treatment of T1DM has focused primarily on hormone replacement and glucose monitoring.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India.
Background: Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are associated with a multifactorial complicated aetiology that is often coexisting and has a strong and distinct connection with cardiovascular diseases (CVDs). In order to accomplish effective and appropriate therapeutic strategies, a deeper understanding of the bidirectional interaction between NAFLD patients, NAFLD patients with T2DM, and NAFLD patients with CVDs is required to control the concomitant rise in prevalence of these conditions worldwide. This article also aims to shed light on the epidemiology and mechanisms behind the relationship between T2DM, NAFLD and the related cardiovascular consequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!