The pharmacokinetics, elimination, and metabolism of fostemsavir (FTR), a prodrug of the HIV-1 attachment inhibitor temsavir (TMR), were investigated in healthy volunteers. FTR was administered with and without ritonavir (RTV), a protease inhibitor previously shown to boost TMR exposures. In vitro studies were also used to identify the enzymes responsible for the metabolism of TMR.Total recovery of the administered dose ranged from 78% to 89%. Approximately 44% to 58% of the dose was excreted in urine, 20%-36% in faeces, and 5% in bile, as TMR and metabolites. RTV had no effect on the recovery of radioactivity in any matrix.Compared to FTR alone, pre-treatment of subjects with RTV increased the exposure of TMR by ∼66% and reduced the exposure of plasma total radioactivity by ∼68%.The major route of TMR elimination was through biotransformation. TMR, M28 (N-dealkylation), and M4 (amide hydrolysis) were the major circulating components in plasma. Pre-treatment with RTV increased the amount of TMR present, decreased the amount of circulating M28, and M4 was unchanged.CYP3A4 metabolism accounted for 21% of the dose, forming multiple oxidative metabolites. This pathway was inhibited by coadministration of RTV.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00498254.2022.2119179DOI Listing

Publication Analysis

Top Keywords

administered ritonavir
8
rtv increased
8
tmr
7
rtv
5
pharmacokinetics metabolism
4
metabolism excretion
4
excretion radiolabeled
4
radiolabeled fostemsavir
4
fostemsavir administered
4
ritonavir healthy
4

Similar Publications

Background: Ensitrelvir is a novel SARS-CoV-2 3-chymotrypsin-like protease inhibitor, similar to nirmatrelvir/ritonavir. Several case reports have demonstrated the efficacy of 3-chymotrypsin-like protease inhibitors in treating prolonged coronavirus disease 2019 (COVID-19) in immunocompromised patients. Tacrolimus (TAC) is a widely used immunosuppressive agent whose blood level can increase significantly due to the inhibition of cytochrome P450 3A (CYP3A) and P-glycoprotein by nirmatrelvir/ritonavir.

View Article and Find Full Text PDF

We identified a 5-fluoro-benzothiazole-containing small molecule, TKB272, through fluorine-scanning of the benzothiazole moiety, which more potently inhibits the enzymatic activity of SARS-CoV-2's main protease (M) and more effectively blocks the infectivity and replication of all SARS-CoV-2 strains examined including Omicron variants such as SARS-CoV-2 and SARS-CoV-2 than two M inhibitors: nirmatrelvir and ensitrelvir. Notably, the administration of ritonavir-boosted nirmatrelvir and ensitrelvir causes drug-drug interactions warranting cautions due to their CYP3A4 inhibition, thereby limiting their clinical utility. When orally administered, TKB272 blocked SARS-CoV-2 replication without ritonavir in B6.

View Article and Find Full Text PDF

Introduction: Despite the generally mild course of COVID-19 in children, immunocompromised patients may experience complications or severe infection. This study reports the clinical outcomes of pediatric patients treated with nirmatrelvir and ritonavir (N/R) for SARS-CoV-2 infection.

Methods: We retrospectively reported the data of children with any immunodeficiency with COVID-19 who received N/R treatment between March 2022 and June 2023 at the Bambino Gesù Children's Hospital.

View Article and Find Full Text PDF

Background: This research article delves into the battle against the COVID-19 pandemic, focusing on the efficacy and, particularly, the safety of the combination of nirmatrelvir with ritonavir, which is found in the pharmaceutical product Paxlovid. This study aims to analyze the potential interactions of commonly prescribed medicinal products with Paxlovid, shedding light on its utilization in specific medical fields.

Methods: Prescription data from the Czech Republic's Institute of Health Information and Statistics (IHIS CR) was analyzed, covering 4 million COVID-19 patients and 87.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!