In this study, dinuclear cobalt complexes (1 and 2) featuring bis(benzimidazole)pyrazolide-type ligands (H L and Me L) were prepared and evaluated as molecular electrocatalysts for water oxidation. Notably, 1 bearing a non-innocent ligand (H L) displayed faster catalytic turnover than 2 under alkaline conditions, and the base dependence of water oxidation and kinetic isotope effect analysis indicated that the reaction mediated by 1 proceeded by a different mechanism relative to 2. Spectroelectrochemical, cold-spray ionization mass spectrometric and computational studies found that double deprotonation of 1 under alkaline conditions cathodically shifted the catalysis-initiating potential and further altered the turnover-limiting step from nucleophilic water attack on (H L)Co (superoxo) to deprotonation of (L)Co (OH) . The rate-overpotential analysis and catalytic Tafel plots showed that 1 exhibited a significantly higher rate than previously reported Ru-based dinuclear electrocatalysts at similar overpotentials. These observations suggest that using non-innocent ligands is a valuable strategy for designing effective metal-based molecular water oxidation catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202201317 | DOI Listing |
Langmuir
January 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Research Center for Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Unveiling the key influencing factors towards electrode/electrolyte interface control is a long-standing challenge for a better understanding of microscopic electrode kinetics, which is indispensable to building up guiding principles for designer electrocatalysts with desirable functionality. Herein, we exemplify the oxygen evolution reaction (OER) via water molecule oxidation with the iridium dioxide electrocatalyst and uncovered the significant mismatching effect of pH between local electrode surface and bulk electrolyte: the intrinsic OER activity under acidic or near-neutral condition was deciphered to be identical by adjusting this pH mismatching. This result indicates that the local pH effect at the electrified solid-liquid interface plays the main role in the "fake" OER performance.
View Article and Find Full Text PDFChemistry
January 2025
National Tsing Hua University, Department of Chemical Engineering, 101, Sec 2, Kuang-Fu Rd., 300, Hsinchu, TAIWAN.
This study focuses on enhancing the water oxidation reaction (WOR) efficacy of dinuclear cobalt complex catalysts from both kinetic (turnover frequency, TOF) and thermodynamic (overpotential, η) perspectives. For this purpose, we synthesized six dinuclear cobalt complexes 1-6 comprising non-innocent ligands with different electronically active substituents (-OMe (1), -Me (2), -H (3), -F (4), -Cl (5), and -CN (6)). The electronic effects on the electrochemical WOR under neutral, acidic, and alkaline conditions were investigated experimentally and computationally.
View Article and Find Full Text PDFBirth Defects Res
January 2025
Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA.
Background: Epidemiological studies report associations of drinking water disinfection byproducts (DBPs) with adverse health outcomes, including birth defects. Here, we used a rat model susceptible to pregnancy loss (full-litter resorption; FLR) and eye malformations (anophthalmia, microphthalmia) to test 11 DBPs, including trihalomethanes, haloacetic acids (HAAs), and nitrogen-containing DBPs (N-DBPs).
Methods: Timed-pregnant F344 rats received gavage doses of chloroform, chlorodibromomethane, iodoform, chloroacetic acid, bromoacetic acid, dibromoacetic acid (DBA), diiodoacetic acid (DIA), trichloroacetic acid (TCA), dibromonitromethane, and iodoacetonitrile on gestation days (GD) 6-10.
Environ Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Iodinated DBPs (I-DBPs), many more toxic than regulated chlorinated and/or brominated DBPs, are a major challenge in the supply of safe drinking water. While over 800 DBPs have been identified, the occurrence and precursors of toxic I-DBPs remain poorly understood. Herein, natural organic matter from two raw drinking waters was fractionated using ultrafiltration membranes into different groups based on molecular weight (MW).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!