Aims/objectives: Wound healing in people with diabetes is delayed secondary to impaired nitric oxide generation, advanced glycation end products (AGE), and poor migration of epithelial cells. We developed a novel topical esmolol hydrochloride (Galnobax) and assessed its efficacy for wound healing in streptozocin-induced diabetic hairless rat.

Methods: All experiments were performed at an animal laboratory and tertiary-care research facility. aldose reductase inhibition was assessed from enzymes obtained from a bacterial culture (spectrophotometer), sorbitol content in homogenized red blood cells, and AGE in glucose and bovine serum by fluorometry following the addition of esmolol in varying concentrations. A scratch assay of human fibroblasts, endothelial cells, and keratinocytes was assessed under a high-glucose environment and after esmolol by phase-contrast microscopy. The efficacy evaluation of the topical application of Galnobax (14 and 20%) or vehicle was conducted in streptozotocin-induced diabetic hairless rats, and endogenous nitrite and hydroxyproline from homogenized wound tissue were measured along with pharmacokinetic and dermal toxicity in Hanford miniature swine.

Results: Esmolol inhibited the formation of sorbitol by 59% in erythrocytes in comparison to glucose-induced sorbitol levels. AGE generation in bovine serum albumin was reduced at 1 mM esmolol concentrations (2.6 ± 1.7) compared with control ( < 0.05) and similar to that of diclofenac (2.5 ± 1.3). Esmolol at 1 and 10 µM enhanced the migration of fibroblasts, epithelial cells, and keratinocytes compared with control. The nitric oxide levels (day 7) were 44 and 112% higher with Galnobax (14%) than those of the diabetic group ( < 0.05) and the vehicle control group ( < 0.05), respectively. The days 7 and 14 hydroxyproline in the wound was higher by 22 and 44% following Galnobax (14%) compared with the diabetic and vehicle control groups. The wound area exhibited better reduction with Galnobax at 14% up to day 10 follow-up compared with the controls. The pharmacokinetic and dermal toxicity in miniature swine suggested no significant adverse event with Galnobax.

Conclusions: Topical esmolol hydrochloride is a novel, safe, and effective treatment modality that acts through pleotropic mechanisms to hasten wound healing in diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9446078PMC
http://dx.doi.org/10.3389/fendo.2022.926129DOI Listing

Publication Analysis

Top Keywords

wound healing
16
topical esmolol
12
esmolol hydrochloride
12
galnobax 14%
12
novel topical
8
esmolol
8
healing diabetes
8
aldose reductase
8
generation advanced
8
advanced glycation
8

Similar Publications

Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.

View Article and Find Full Text PDF

Photobiomodulation (PBM) is considered an effective and safe therapeutic modality in supporting the treatment of complications from a global pandemic-diabetes. In this study, PBM therapy is investigated to accelerate wound healing in diabetic mice (DM), under the combined biological effects of red light from a red organic light-emitting diode (ROLED) and near-infrared (NIR) light from an NIR conversion film (NCF) with dispersed CuInS/ZnS quantum dots (QDs). The QD concentration and the NCF structure were optimized to maximize the optical properties and mechanical stability.

View Article and Find Full Text PDF

Background Aims: The clinical translation of mesenchymal stromal cell secretome (MSC-S) has been challenging owing to a lack of appropriate methods in downstream processing. Dialysis is an age-old method of protein purification by the exchange of small molecules through a semi-permeable membrane. In this study, we investigated the potential of three forms of umbilical cord-derived MSC secretome (UC-MSC-S)-native (S), dialyzed (DS), and lyophilized (LDS)-for wound healing applications.

View Article and Find Full Text PDF

Engineered Au@MOFs silk fibroin-based hydrogel phototherapy platform for enhanced wound healing performance.

Int J Biol Macromol

January 2025

School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:

Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!