A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Approximating Empirical Surface Reflectance Data through Emulation: Opportunities for Synthetic Scene Generation. | LitMetric

Collection of spectroradiometric measurements with associated biophysical variables is an essential part of the development and validation of optical remote sensing vegetation products. However, their quality can only be assessed in the subsequent analysis, and often there is a need for collecting extra data, e.g., to fill in gaps. To generate empirical-like surface reflectance data of vegetated surfaces, we propose to exploit emulation, i.e., reconstruction of spectral measurements through statistical learning. We evaluated emulation against classical interpolation methods using an empirical field dataset with associated hyperspectral spaceborne CHRIS and airborne HyMap reflectance spectra, to produce synthetic CHRIS and HyMap reflectance spectra for any combination of input biophysical variables. Results indicate that: (1) emulation produces surface reflectance data more accurately than interpolation when validating against a separate part of the field dataset; and (2) emulation produces the spectra multiple times (tens to hundreds) faster than interpolation. This technique opens various data processing opportunities, e.g., emulators not only allow rapidly producing large synthetic spectral datasets, but they can also speed up computationally intensive processing routines such as synthetic scene generation. To demonstrate this, emulators were run to simulate hyperspectral imagery based on input maps of a few biophysical variables coming from CHRIS, HyMap and Sentinel-2 (S2). The emulators produced spaceborne CHRIS-like and airborne HyMap-like surface reflectance imagery in the order of seconds, thereby approximating the spectra of vegetated surfaces sufficiently similar to the reference images. Similarly, it took a few minutes to produce a hyperspectral data cube with a spatial texture of S2 and a spectral resolution of HyMap.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613354PMC
http://dx.doi.org/10.3390/rs11020157DOI Listing

Publication Analysis

Top Keywords

surface reflectance
16
reflectance data
12
biophysical variables
12
synthetic scene
8
scene generation
8
vegetated surfaces
8
field dataset
8
hymap reflectance
8
reflectance spectra
8
chris hymap
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!