Several studies have shown that soluble guanylate cyclase (sGC) stimulators have cardiovascular (CV) benefits. However, few bibliometric analyses have examined this field systematically. Our study aimed to examine the publications to determine the trends and hotspots in CV research on sGC stimulators. Publications on sGC stimulators in CV research were retrieved from the Web of Science Core Collection. VOSviewer and CiteSpace visualization software were used to analyze publication trends, countries (regions) and institutions, journals and cited journals, authors and cited references, as well as keywords. A total of 1,212 literatures were obtained. From its first appearance in 1992-2021 (based on WOSCC record), the overall volume of publications has shown a gradual increasing trend. Nearly one-third were authored by American scholars, and most were published in Circulation, Circulation Research, and Proceedings of the National Academy of Sciences of the United States of America. Bayer Agency in Germany was the leading driving force, and has a high academic reputation in this field. Stasch JP has published the most related articles and been cited most frequently. Half of the top 10 co-cited references were published in the leading highly co-cited journal Circulation and New England Journal of Medicine. "NO," "allosteric regulation" and "free radicals" were the focus of previous research, "chronic thromboembolic pulmonary hypertension," "pulmonary hypertension" and "heart failure" were the main research hotspots. The key words "chronic thromboembolic pulmonary hypertension," "Pulmonary hypertension," "preserved ejection fraction" and "heart failure" appeared most recently as research frontiers. The research in the CV field of sGC stimulators was relatively comprehensive, and there was a close relationship among countries, research institutions and authors, but it is still in the exploratory stage in the treatment of CV disease. At present, most studies focus on the results of clinical trials. sGC stimulators in the treatment of heart failure, especially heart failure with preserved ejection fraction, may be the hotpots and Frontier at present and in the future, and should be closely monitored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445840PMC
http://dx.doi.org/10.3389/fphar.2022.963255DOI Listing

Publication Analysis

Top Keywords

sgc stimulators
20
soluble guanylate
8
guanylate cyclase
8
stimulators cardiovascular
8
web science
8
"chronic thromboembolic
8
thromboembolic pulmonary
8
pulmonary hypertension"
8
hypertension" "pulmonary
8
"pulmonary hypertension"
8

Similar Publications

Molecular basis of JAK kinase regulation guiding therapeutic approaches: Evaluating the JAK3 pseudokinase domain as a drug target.

Adv Biol Regul

December 2024

Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Finland; Department of Microbiology, Fimlab Laboratories, P.O.Box 66, 33013, Tampere, Finland. Electronic address:

Janus kinases (JAK1-3, TYK2) are critical mediators of cytokine signaling and their role in hematological and inflammatory and autoimmune diseases has sparked widespread interest in their therapeutic targeting. JAKs have unique tandem kinase structure consisting of an active tyrosine kinase domain adjacent to a pseudokinase domain that is a hotspot for pathogenic mutations. The development of JAK inhibitors has focused on the active kinase domain and the developed drugs have demonstrated good clinical efficacy but due to off-target inhibition cause also side-effects and carry a black box warning limiting their use.

View Article and Find Full Text PDF

Different sensitivities of porcine coronary arteries and veins to BAY 60-2770, a soluble guanylate cyclase activator.

J Pharmacol Sci

January 2025

Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-1094, Japan.

Nitric oxide (NO)-donor drugs, which stimulate reduced form of soluble guanylate cyclase (sGC), have different efficacy to the arteries and veins. This study examined whether sGC activators, which activate oxidized/apo sGC, also have arteriovenous selectivity similar to that of NO-donor drugs. The mechanical responses of the isolated blood vessels were assessed using the organ chamber technique and protein expression was verified using western blotting.

View Article and Find Full Text PDF

Background: Oxidative stress (OS) is involved in low female fertility by altering multi-omics such as the transcriptome, miRome, and lncRNome in follicular cells and follicular fluid. However, the mechanism by which OS affects multi-omics dynamics remains largely unknown. Here, we report that OS induces lncRNome dynamics in sow granulosa cells (sGCs), which is partially dependent on the transcription factor activity of its effector, FoxO1.

View Article and Find Full Text PDF

Qifu yixin prescription ameliorates cardiac fibrosis by activating soluble guanylate cyclase (sGC) in heart failure.

J Ethnopharmacol

December 2024

Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Cardiology, Anhui Hospital of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Hefei Anhui, 230011, China. Electronic address:

Ethnopharmacological Relevance: Qifu yixin prescription (QYP), an effective traditional Chinese medicine formula, has been utilized in the clinical treatment of cardiovascular diseases for over two decades and has been granted a national invention patent in China. It has demonstrated the ability to improve clinical symptoms in patients with heart failure. However, its precise effects and underlying molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Soluble guanylyl cyclase stimulators and activators: Promising drugs for the treatment of hypertension?

Eur J Pharmacol

January 2025

Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; First Department of Internal Medicine, Cardiology, Olomouc University Hospital and Palacký University, Olomouc, Czech Republic.

Nitric oxide (NO)-stimulated cyclic guanosine monophosphate (cGMP) is a key regulator of cardiovascular health, as NO-cGMP signalling is impaired in diseases like pulmonary hypertension, heart failure and chronic kidney disease. The development of NO-independent sGC stimulators and activators provide a novel therapeutic option to restore altered NO signalling. sGC stimulators have been already approved for the treatment of pulmonary arterial hypertension (PAH), chronic thromboembolic pulmonary hypertension (CTEPH), and chronic heart failure (HFrEF), while sGC activators are currently in phase-2 clinical trials for CKD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!