Biofilm aggregates and the host airway-microbial interface.

Front Cell Infect Microbiol

Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, United States.

Published: September 2022

Biofilms are multicellular microbial aggregates that can be associated with host mucosal epithelia in the airway, gut, and genitourinary tract. The host environment plays a critical role in the establishment of these microbial communities in both health and disease. These host mucosal microenvironments however are distinct histologically, functionally, and regarding nutrient availability. This review discusses the specific mucosal epithelial microenvironments lining the airway, focusing on: i) biofilms in the human respiratory tract and the unique airway microenvironments that make it exquisitely suited to defend against infection, and ii) how airway pathophysiology and dysfunctional barrier/clearance mechanisms due to genetic mutations, damage, and inflammation contribute to biofilm infections. The host cellular responses to infection that contribute to resolution or exacerbation, and insights about evaluating and therapeutically targeting airway-associated biofilm infections are briefly discussed. Since so many studies have focused on in the context of cystic fibrosis (CF) or on in the context of upper and lower respiratory diseases, these bacteria are used as examples. However, there are notable differences in diseased airway microenvironments and the unique pathophysiology specific to the bacterial pathogens themselves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445362PMC
http://dx.doi.org/10.3389/fcimb.2022.969326DOI Listing

Publication Analysis

Top Keywords

host mucosal
8
airway microenvironments
8
biofilm infections
8
host
5
airway
5
biofilm aggregates
4
aggregates host
4
host airway-microbial
4
airway-microbial interface
4
interface biofilms
4

Similar Publications

Linking E. coli to fibrosis in Crohn's disease.

Cell Host Microbe

January 2025

The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD School of Medicine, University College Dublin, Dublin, Ireland. Electronic address:

Intestinal fibrosis associated with Crohn's disease is a serious yet poorly understood clinical complication. In this issue of Cell Host & Microbe, Ahn and colleagues provide evidence that the adherent intestinal E. coli produced the metallophore yersiniabactin, which sequesters zinc to drive intestinal fibrosis in a HIF-1α-dependent manner.

View Article and Find Full Text PDF

pksE. coli adhesins-The fine line between good and evil.

Cell Host Microbe

January 2025

Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China. Electronic address:

Gut bacteria could promote colorectal cancer by generating genotoxins. In a recent issue of Nature, Jans et al. identified bacterial adhesion as an additional determinant for the genotoxic activity of colibactin-producing E.

View Article and Find Full Text PDF

How prevalent are lactoferrin receptors in Gram-negative bacteria?

Biochem Cell Biol

January 2025

Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.

Surface receptors in Gram-negative bacteria that bind and extract iron from the host glycoproteins transferrin (Tf) or lactoferrin (Lf) was discovered 35 years ago in pathogenic species and subsequently was discovered in other pathogens of humans and food production animals. These bacterial species reside exclusively on the mucosal surfaces of the respiratory or genitourinary tract of their mammalian host and rely on their host specific Tf and Lf receptors to acquire iron for survival. Since the specificity of the bacterial Tf receptors was shown to be due to selective pressures on the host Tf, their presence in bacteria that reside in both mammals and birds indicates that they arose over 320 million years ago.

View Article and Find Full Text PDF

Graft-versus-host disease (GVHD) is less common in autologous stem cell transplantation (ASCT) recipients than in allogeneic SCT recipients. However, some cases of severe GVHD, especially involving the gastrointestinal (GI) tract, have been documented. We present a patient with primary central nervous system lymphoma (PCNSL) exhibiting severe GI-GVHD after ASCT with busulfan/thiotepa conditioning.

View Article and Find Full Text PDF

Intestinal Foxl1+ cell-derived CXCL12 maintains epithelial homeostasis by modulating cellular metabolism.

Int Immunol

January 2025

Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.

Several mesenchymal cell populations are known to regulate intestinal stem cell (ISC) self-renewal and differentiation. However, the influences of signaling mediators derived from mesenchymal cells other than ISC niche factors on epithelial homeostasis remain poorly understood. Here, we show that host and microbial metabolites, such as taurine and GABA, act on PDGFRαhigh Foxl1high sub-epithelial mesenchymal cells to regulate their transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!