When a vehicle is being driven, it is excited by the road roughness and generates its own vibration. In order to improve the vehicle's riding comfort and the physical-mental health of passengers in the vehicle, this paper proposes a formulation method for a comfortable speed strategy and the technical route of its application. According to international standard ISO 2631-1, the relationship between the weighted root-mean-square acceleration value and comfortable vehicle speed is analyzed. The simulation test platform of the road roughness signal and vehicle vibration signal is built by using the filtering white noise method and the second Lagrange equation through Matlab/Simulink. Combined with the simulation platform, this paper extracts seven characteristics with statistical properties from the time-domain signal and obtains 500 sample data. Random forest (RF), extreme learning machine (ELM), and radial basis function neural network (RBF-NN) are applied to identify roads. Two comfortable speed strategy formulation methods based on the improved simulated annealing (ISA) algorithm are proposed and compared according to the solution effect of each grade of comfortable speed. The results show that the simulated signals of each grade road roughness are accurate. Road recognition can be effectively carried out using the statistical characteristics of vehicle vibration acceleration signals. ELM has high recognition accuracy and fast execution speed. The ISA-II algorithm has a low solution error of comfortable speed and a low computation time. The comfortable speed of the research vehicle on different road grades showed a great difference.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460285PMC
http://dx.doi.org/10.3390/s22176682DOI Listing

Publication Analysis

Top Keywords

comfortable speed
24
vehicle vibration
12
speed strategy
12
road roughness
12
road recognition
8
vibration signal
8
speed
8
strategy formulation
8
isa algorithm
8
vehicle
7

Similar Publications

Robot-assisted vs. manual cochlear implant electrode array insertion in four children.

Eur Arch Otorhinolaryngol

January 2025

Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy.

Purpose: Evaluate the feasibility and safety of a robotic electrode insertion in pediatric cochlear implantation and compare the results with manually inserted electrodes in the same subject.

Methods: Retrospective case series review of four children who underwent bilateral cochlear implantation with the same array: on one side, the array was inserted using the robot, while on the other side the array was inserted manually. Behavioural and electrophysiological measures were compared.

View Article and Find Full Text PDF

Smooth braking control of excavator hydraulic load based on command reshaping.

ISA Trans

January 2025

School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523015, China; School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China. Electronic address:

Excavators, a type of human-operated construction machinery, suffer from poor hydraulic load braking stability, which seriously affects operator comfort. To address this challenge, this study investigates load braking laws through model analysis and designs an open-loop control algorithm called command reshaping, which can prolong the small-opening time of the main valve by segmentally adjusting the joystick command during load braking and then actively adjusting the key parameters reflecting the system's kinetic-potential energy state, thereby suppressing braking oscillations. The experimental results based on a 1.

View Article and Find Full Text PDF

Achilles tendon overuse injuries are common for long-distance runners. Ankle exos (exoskeletons and exosuits) are wearable devices that can reduce Achilles tendon loading and could potentially aid in the rehabilitation or prevention of these injuries by helping to mitigate and control tissue loading. However, most ankle exos are confined to controlled lab testing and are not practical to use in real-world running.

View Article and Find Full Text PDF

Among control methods for robotic exoskeletons, biologically inspired control based on central pattern generators (CPGs) offer a promising approach to generate natural and robust walking patterns. Compared to other approaches, like model-based and machine learning-based control, the biologically inspired control provides robustness to perturbations, requires less computational power, and does not need system models or large learning datasets. While it has shown effectiveness, a comprehensive evaluation of its user experience is lacking.

View Article and Find Full Text PDF

Enhancing Heart Rate-Based Estimation of Energy Expenditure and Exercise Intensity in Patients Post Stroke.

Bioengineering (Basel)

December 2024

Department of Physical Therapy, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA 02215, USA.

Background: Indirect calorimetry is the gold standard field-testing technique for measuring energy expenditure and exercise intensity based on the volume of oxygen consumed (VO, mL O/min). Although heart rate is often used as a proxy for VO, heart rate-based estimates of VO may be inaccurate after stroke due to changes in the heart rate-VO relationship. Our objective was to evaluate in people post stroke the accuracy of using heart rate to estimate relative walking VO (wVO) and classify exercise intensity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!