The rapid development of technology has brought about a revolution in healthcare stimulating a wide range of smart and autonomous applications in homes, clinics, surgeries and hospitals. Smart healthcare opens the opportunity for a qualitative advance in the relations between healthcare providers and end-users for the provision of healthcare such as enabling doctors to diagnose remotely while optimizing the accuracy of the diagnosis and maximizing the benefits of treatment by enabling close patient monitoring. This paper presents a comprehensive review of non-invasive vital data acquisition and the Internet of Things in healthcare informatics and thus reports the challenges in healthcare informatics and suggests future work that would lead to solutions to address the open challenges in IoT and non-invasive vital data acquisition. In particular, the conducted review has revealed that there has been a daunting challenge in the development of multi-frequency vital IoT systems, and addressing this issue will help enable the vital IoT node to be reachable by the broker in multiple area ranges. Furthermore, the utilization of multi-camera systems has proven its high potential to increase the accuracy of vital data acquisition, but the implementation of such systems has not been fully developed with unfilled gaps to be bridged. Moreover, the application of deep learning to the real-time analysis of vital data on the node/edge side will enable optimal, instant offline decision making. Finally, the synergistic integration of reliable power management and energy harvesting systems into non-invasive data acquisition has been omitted so far, and the successful implementation of such systems will lead to a smart, robust, sustainable and self-powered healthcare system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460364 | PMC |
http://dx.doi.org/10.3390/s22176625 | DOI Listing |
Anat Sci Int
January 2025
Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
Tenomodulin (TNMD) is related to chondromodulin-1, a cartilage-derived growth regulator. It is specifically expressed in hypovascular connective tissues, including tendons and ligaments. Vascular endothelial growth factor A (VEGF-A) and calcitonin gene-related peptide (CGRP) correlate with angiogenesis and neurogenesis, respectively, during development.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy.
Trapped ion mobility spectrometry (TIMS) using parallel accumulation serial fragmentation (PASEF) is an advanced analytical technique that offers several advantages in mass spectrometry (MS)-based lipidomics. TIMS provides an additional dimension of separation to mass spectrometry and accurate collision cross-section (CCS) measurements for ions, aiding in the structural characterization of molecules. This is especially valuable in lipidomics for identifying and distinguishing isomeric or structurally similar compounds.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Bioscience, Research and Early Development, Oncology, AstraZeneca, Cambridge, Cambridgeshire, UK.
A protocol for the preparation of tissue extracts for the targeted analysis ca. 150 polar metabolites, including those involved in central carbon metabolism, is described, using a reversed phase ion pair U(H)PLC-MS method. Data collection enabled in high-resolution mass spectrometry detection provides highly specific and sensitive acquisition of metabolic intermediates with wide range physicochemical properties and pathway coverage.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Hangzhou, China.
Studies have shown that patients who undergo heart transplantation (HTx) are at an increased risk for developing skin cancer. This condition can add physiological and psychological burden to patients. Therefore, assessing the incidence and identifying risk factors for skin cancer are crucial steps in its prevention.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Radiation Oncology, Stanford University, Palo Alto, California, USA.
Background: Dosimetric commissioning and quality assurance (QA) for linear accelerators (LINACs) present a significant challenge for clinical physicists due to the high measurement workload and stringent precision standards. This challenge is exacerbated for radiosurgery LINACs because of increased measurement uncertainty and more demanding setup accuracy for small-field beams. Optimizing physicists' effort during beam measurements while ensuring the quality of the measured data is crucial for clinical efficiency and patient safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!