A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

End-to-End Continuous/Discontinuous Feature Fusion Method with Attention for Rolling Bearing Fault Diagnosis. | LitMetric

Mechanical equipment failure may cause massive economic and even life loss. Therefore, the diagnosis of the failures of machine parts in time is crucial. The rolling bearings are one of the most valuable parts, which have attracted the focus of fault diagnosis. Many successful rolling bearing fault diagnoses have been made based on machine learning and deep learning. However, most diagnosis methods still rely on complex signal processing and artificial features, bringing many costs to the deployment and migration of diagnostic models. This paper proposes an end-to-end continuous/discontinuous feature fusion method for rolling bearing fault diagnosis (C/D-FUSA). This method comprises long short-term memory (LSTM), convolutional neural networks (CNN) and attention mechanism, which automatically extracts the continuous and discontinuous features from vibration signals for fault diagnosis. We also propose a contextual-dependent attention module for the LSTM layers. We compare the method with the other simpler deep learning methods and state-of-the-art methods in rolling bearing fault data sets with different sample rates. The results show that our method is more accurate than the other methods with real-time inference. It is also easy to be deployed and trained in a new environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460838PMC
http://dx.doi.org/10.3390/s22176489DOI Listing

Publication Analysis

Top Keywords

rolling bearing
16
bearing fault
16
fault diagnosis
16
end-to-end continuous/discontinuous
8
continuous/discontinuous feature
8
feature fusion
8
fusion method
8
deep learning
8
fault
6
diagnosis
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!