The in-situ health condition of carbon fiber reinforced polymer (CFRP) reinforced structures has become an important topic, which can reflect the structural performance of the retrofitted structures and judge the design theory. An optical fiber-based structural health monitoring technique is thus suggested. To check the effectiveness of the proposed method, experimental testing on smart CFRP reinforced steel beams under impact action has been performed, and the dynamic response of the structure has been measured by the packaged FBG sensors attached to the surface of the beam and the FBG sensors inserted in the CFRP plates. Time and frequency domain analysis has been conducted to check the structural feature of the structures and the performance of the installed sensors. Results indicate that the packaged Fiber Bragg Grating (FBG) sensors show better sensing performance than the bare FBG sensors in perceiving the impact response of the beam. The sensors embedded in the CFRP plate show good measurement accuracy in sensing the external excitation and can replace the surface-attached FBG sensors. The dynamic performance of the reinforced structures subjected to the impact action can be straightforwardly read from the signals of FBG sensors. The larger impact energies bring about stronger impact signals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460907PMC
http://dx.doi.org/10.3390/s22176377DOI Listing

Publication Analysis

Top Keywords

fbg sensors
24
cfrp reinforced
12
impact action
12
dynamic response
8
reinforced steel
8
steel beams
8
subjected impact
8
reinforced structures
8
sensors
8
fbg
7

Similar Publications

Utilizing Tissues Self-Assembled in Fiber Optic-Based "Chinese Guzheng Strings" for Contractility Sensing and Drug Efficacy Evaluation: A Practical Approach.

Small

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China.

Recent advances in drug design and compound synthesis have highlighted the increasing need for effective methods of toxicity evaluation. A specialized force sensor, known as the light wavelength-encoded "Chinese guzheng" is developed. This innovative sensor is equipped with optical fiber strings and utilizes a wavelength-encoded fiber Bragg grating (FBG) that is chemically etched to reduce its diameter.

View Article and Find Full Text PDF

A novel, to the best of our knowledge, optical fiber whispering-gallery mode (WGM) sensor for simultaneously measuring humidity and temperature is proposed and investigated. The proposed sensor is realized by a polyvinyl alcohol (PVA)-coated capillary tube coupling with an optical single-mode fiber (SMF), which is integrated with a fiber Bragg grating (FBG). The as-fabricated sensor can be used not only for relative humidity (RH) sensing but also for temperature detection.

View Article and Find Full Text PDF

Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.

View Article and Find Full Text PDF

The effects of mechanical vibrations on control system stability could be significant in control systems designed on the assumption of rigid-body dynamics, such as launch vehicles. Vibrational loads can also cause damage to launch vehicles due to fatigue or excitation of structural resonances. This paper investigates a method to control structural vibrations in real time using a finite number of strain measurements from a fiber Bragg grating (FBG) sensor array.

View Article and Find Full Text PDF

Research Progress in Fiber Bragg Grating-Based Ocean Temperature and Depth Sensors.

Sensors (Basel)

December 2024

College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China.

Fiber Bragg gratings (FBGs) are widely used in stress and temperature sensing due to their small size, light weight, high resistance to high temperatures, corrosion, electromagnetic interference, and low cost. In recent years, various structural enhancements and sensitization to FBGs have been explored to improve the performance of ocean temperature and depth sensors, thereby enhancing the accuracy and detection range of ocean temperature and depth data. This paper reviews advancements in temperature, pressure, and dual-parameter enhancement techniques for FBG-based sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!