Microwave hyperthermia (MH) requires the effective calibration of antenna excitations for the selective focusing of the microwave energy on the target region, with a nominal effect on the surrounding tissue. To this end, many different antenna calibration methods, such as optimization techniques and look-up tables, have been proposed in the literature. These optimization procedures, however, do not consider the whole nature of the electric field, which is a complex vector field; instead, it is simplified to a real and scalar field component. Furthermore, most of the approaches in the literature are system-specific, limiting the applicability of the proposed methods to specific configurations. In this paper, we propose an antenna excitation optimization scheme applicable to a variety of configurations and present the results of a convolutional neural network (CNN)-based approach for two different configurations. The data set for CNN training is collected by superposing the information obtained from individual antenna elements. The results of the CNN models outperform the look-up table results. The proposed approach is promising, as the phase-only optimization and phase-power-combined optimization show a 27% and 4% lower hotspot-to-target energy ratio, respectively, than the look-up table results for the linear MH applicator. The proposed deep-learning-based optimization technique can be utilized as a protocol to be applied on any MH applicator for the optimization of the antenna excitations, as well as for a comparison of MH applicators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460623PMC
http://dx.doi.org/10.3390/s22176343DOI Listing

Publication Analysis

Top Keywords

antenna excitation
8
optimization
8
excitation optimization
8
antenna excitations
8
look-up table
8
antenna
6
optimization deep
4
deep learning
4
learning microwave
4
microwave breast
4

Similar Publications

Low-temperature scanning tunneling spectroscopy is a key method to probe electronic and magnetic properties down to the atomic scale, but suffers from extreme vibrational sensitivity. This makes it challenging to employ closed-cycle cooling with its required pulse-type vibrational excitations, albeit this is mandatory to avoid helium losses for counteracting the continuously raising helium prices. Here, we describe a compact ultra-high vacuum scanning tunneling microscope (STM) system with an integrated primary pulse tube cooler (PTC) for closed-cycle operation.

View Article and Find Full Text PDF

Green ammonia synthesis using fluctuating renewable energy supply in decentralized process is a goal that has been long sought after. Ammonia synthesis with non-thermal plasma under mild conditions is a promising technology, but it faces the critical challenge of low energy efficiency. Herein, we develop an easily-scalable AuCu3/Cu catalyst, which consists of a decimeter-scale metallic Cu antenna and nano-scale AuCu3 catalytic sites on metallic Cu surface, significantly enhancing the energy efficiency and ammonia yield in a radio-frequency (RF) plasma system.

View Article and Find Full Text PDF

Light-harvesting complexes (LHCs) play a critical role in modulating energy flux within photosynthetic organisms in response to fluctuating light. Under high light conditions, they activate quenching mechanisms to mitigate photodamage. Despite their importance, the molecular mechanisms underlying these photoprotective processes remain incomplete.

View Article and Find Full Text PDF

Excitation energy transfer between the photochemically active protein complexes is key for photosynthetic processes. Phototrophic organisms like cyanobacteria experience subtle changes in irradiance under natural conditions. Such changes need adjustments to the excitation energy transfer between the photosystems for sustainable growth.

View Article and Find Full Text PDF

We discuss the possibility of self-hybridisation in high-index dielectric nanoparticles, where Mie modes of electric or magnetic type can couple to the interband transitions of the material, leading to spectral anticrossings. Starting with an idealised system described by moderately high constant permittivity with a narrow Lorentzian, in which self-hybridisation is visible for both plane-wave and electron-beam excitation, we embark on a quest for realistic systems where this effect should be visible. We explore a variety of spherical particles made of traditional semiconductors such as Si, GaAs, and GaP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!