Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The wide application of fiber-reinforced polymer composite (FRPC) materials has given rise to the problem of their durability and performance over time. These problems are largely associated with their environmental conditions and service procedures, including ultraviolet (UV) irradiation. Here, we propose the production of polyester-based composites with different contents of synthesized YAlO:Ce,Ga (YAG:Ce,Ga) particles to provide sensing abilities towards material degradation. In this regard, the composites were subjected to UV radiation exposure, and its influence on the morphological, mechanical, and optical properties of the materials was investigated. Our findings reveal the self-sensing capabilities of the developed FRPC. The results indicate the potential of the system for the development of highly effective coatings allowing to detect and monitor UV degradation in composite materials for demanding applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460219 | PMC |
http://dx.doi.org/10.3390/polym14173666 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!