Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The accumulation of toxic heavy metal ions continues to be a global concern due to their adverse effects on the health of human beings and animals. Adsorption technology has always been a preferred method for the removal of these pollutants from wastewater due to its cost-effectiveness and simplicity. Hence, the development of highly efficient adsorbents as a result of the advent of novel materials with interesting structural properties remains to be the ultimate objective to improve the adsorption efficiencies of this method. As such, advanced materials such as metal-organic frameworks (MOFs) that are highly porous crystalline materials have been explored as potential adsorbents for capturing metal ions. However, due to their diverse structures and tuneable surface functionalities, there is a need to find efficient characterization techniques to study their atomic arrangements for a better understanding of their adsorption capabilities on heavy metal ions. Moreover, the existence of various species of heavy metal ions and their ability to form complexes have triggered the need to qualitatively and quantitatively determine their concentrations in the environment. Hence, it is crucial to employ techniques that can provide insight into the structural arrangements in MOF composites as well as their possible interactions with heavy metal ions, to achieve high removal efficiency and adsorption capacities. Thus, this work provides an extensive review and discussion of various techniques such as X-ray diffraction, Brunauer-Emmett-Teller theory, scanning electron microscopy and transmission electron microscopy coupled with energy dispersive spectroscopy, and X-ray photoelectron spectroscopy employed for the characterization of MOF composites before and after their interaction with toxic metal ions. The review further looks into the analytical methods (i.e., inductively coupled plasma mass spectroscopy, ultraviolet-visible spectroscopy, and atomic absorption spectroscopy) used for the quantification of heavy metal ions present in wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460637 | PMC |
http://dx.doi.org/10.3390/polym14173613 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!