Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There is a growing interest in multifunctional composites and in the identification of novel applications for recycled materials. In this work, the design and fabrication of multiple particle-loaded polymer composites, including micronized rubber from end-of-life tires, is studied. The integration of these composites as part of ultrasonic transducers can further expand the functionality of the piezoelectric material in the transducer in terms of sensitivity, bandwidth, ringing and axial resolution and help to facilitate the fabrication and use of phantoms for echography. The adopted approach is a multiphase and multiscale one, based on a polymeric matrix with a load of recycled rubber and tungsten powders. A fabrication procedure, compatible with transducer manufacturing, is proposed and successfully used. We also proposed a modelling approach to calculate the complex elastic modulus, the ultrasonic damping and to evaluate the relative influence of particle scattering. It is concluded that it is possible to obtain materials with acoustic impedance in the range 2.35-15.6 MRayl, ultrasound velocity in the range 790-2570 m/s, attenuation at 3 MHz, from 0.96 up to 27 dB/mm with a variation of the attenuation with the frequency following a power law with exponent in the range 1.2-3.2. These ranges of values permit us to obtain most of the material properties demanded in ultrasonic engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460227 | PMC |
http://dx.doi.org/10.3390/polym14173614 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!