Diabetes mellitus (DM) is a metabolic disease caused by improper insulin secretion leading to hyperglycemia. has excellent therapeutic properties due to its high levels of phytochemicals. The current research aimed to evaluate the anti-diabetic potential of plant's seeds and the top two phytochemicals (kaempferol and gallic acid) were selected for further analysis. These phytochemicals were selected via computational tools and evaluated for α-Glucosidase inhibitory activity via enzymatic assay. Gallic acid (IC 0.37 µM) and kaempferol (IC 0.87 µM) have shown a stronger α-glucosidase inhibitory capacity than acarbose (5.26 µM). In addition, these phytochemicals demonstrated the highest binding energy, hydrogen bonding, protein-ligand interaction and the best MD simulation results at 100 ns compared to acarbose. Furthermore, the ADMET properties of gallic acid and kaempferol also fulfilled the safety criteria. Thus, it was concluded that could potentially be used to treat DM. The potential bioactive molecules identified in this study (kaempferol and gallic acid) may be used as lead drugs against diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458221 | PMC |
http://dx.doi.org/10.3390/molecules27175734 | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
Rhodomyrtus tomentosa fruits, endemic to the Western Ghats were analyzed for its free, bound and esterified phenolics by Ultra High Performance Liquid Chromatography-Mass Spectrometry. Overall, twenty-nine phenolic compounds were identified, amongst them 18 were detected in this fruit for the first time. Gallic acid (80.
View Article and Find Full Text PDFSci Rep
January 2025
Medical Biochemistry Department, National Research Centre, Giza, 12622, Egypt.
Being the second leading cause of death globally, cancer has been a long-standing and rapidly evolving focus of biomedical research and practice in the world. Recently, there has been growing interest in cyanobacteria. This focus is particularly evident in developing innovative anticancer treatments to reduce reliance on traditional chemotherapy.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China; Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, 530001, China. Electronic address:
Ethnopharmacological Relevance: Ardisia is a large genus of Primulaceae, 734 accepted species worldwide, and most species are used as ethnomedicines for the treatment of bruises, rheumatism, tuberculosis, and various inflammatory diseases. According to our previous ethnobotanical survey, Ardisia gigantifolia Stapf, Ardisia hanceana Mez (Da-luo-san), and Ardisia crenata Sims (Xiao-luo-san) are commonly used in folk medicine for the treatment of rheumatism. Among them, A.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
Tarhana, a traditional fermented food made from cereal flours, yogurt, vegetables, and spices, is recognized for its rich nutritional value and prolonged shelf life. This study investigated the effect of pea protein isolate (PPI) enrichment on select compositional, physical, techno-functional and nutritional properties of tarhana. Six different formulations were prepared by blending PPI and wheat flour (WF) in varying PPI: WF ratios from 0:100 (control) to 100:0.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
January 2025
Department of Medical Affairs, Curie Sciences, Samastipur, Bihar, India.
Recently, there has been a great interest in the development of innovative wound dressing materials based on natural bioactives, as they can accelerate the healing process and address the issues related to traditional wound dressings. The current study focuses on developing a novel derivative of guar gum (GG) and gallic acid (GA) using a simple, free radical-mediated polymerization reaction aimed at enhancing the antioxidant properties of GG. Multiple spectroscopic investigations were performed to validate the GA-GG conjugate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!