Drugs That Changed Society: Microtubule-Targeting Agents Belonging to Taxanoids, Macrolides and Non-Ribosomal Peptides.

Molecules

The Museum of Natural Medicine & The Pharmacognostic Collection, University of Copenhagen, DK-2100 Copenhagen, Denmark.

Published: September 2022

During a screening performed by the National Cancer Institute in the 1960s, the terpenoid paclitaxel was discovered. Paclitaxel expanded the treatment options for breast, lung, prostate and ovarian cancer. Paclitaxel is only present in minute amounts in the bark of . A sustainable supply was ensured with a culture developed from or with semi-synthesis from other taxanes. Paclitaxel is marketed under the name Taxol. An intermediate from the semi-synthesis docetaxel is also used as a drug and marketed as Taxotere. O-Methylated docetaxel is used for treatment of some paclitaxel-resistant cancer forms as cabazitaxel. The solubility problems of paclitaxel have been overcome by formulation of a nanoparticle albumin-bound paclitaxel (NAB-paclitaxel, Abraxane). The mechanism of action is affinity towards microtubules, which prevents proliferation and consequently the drug would be expected primarily to be active towards cancer cells proliferating faster than benign cells. The activity against slowly growing tumors such as solid tumors suggests that other effects such as oncogenic signaling or cellular trafficking are involved. In addition to terpenoids, recently discovered microtubule-targeting polyketide macrolides and non-ribosomal peptides have been discovered and marketed as drugs. The revolutionary improvements for treatment of cancer diseases targeting microtubules have led to an intensive search for other compounds with the same target. Several polyketide macrolides, terpenoids and non-ribosomal peptides have been investigated and a few marketed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457747PMC
http://dx.doi.org/10.3390/molecules27175648DOI Listing

Publication Analysis

Top Keywords

non-ribosomal peptides
12
macrolides non-ribosomal
8
polyketide macrolides
8
paclitaxel
6
cancer
5
drugs changed
4
changed society
4
society microtubule-targeting
4
microtubule-targeting agents
4
agents belonging
4

Similar Publications

Background: The biosynthesis of the natural product family of the polycyclic tetramate macrolactams (PoTeMs) employs an uncommon iterative polyketide synthase/non-ribosomal peptide synthetase (iPKS/NRPS). This machinery produces a universal PoTeM biosynthetic precursor that contains a tetramic acid moiety connected to two unsaturated polyene side chains. The enormous structural and hence functional diversity of PoTeMs is enabled by pathway-specific tailoring enzymes, particularly cyclization-catalyzing oxidases that process the polyene chains to form distinct ring systems, and further modifying enzymes.

View Article and Find Full Text PDF

Deciphering the δ-Lactam Formation and lron-Reducing Activity of Spinactins from .

Org Lett

January 2025

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.

The cyclic structure of non-ribosomal peptides (NRPs) is critical for enhancing their stability and bioactivity, which highlights the importance of exploring NRP cyclization enzymes for natural product discovery. Thioesterases (TEs) are crucial enzymes that catalyze the formation of various lactams, including macrolactams, β-lactams, and γ-lactams; however, their potential to produce other lactam types remains largely unexplored. In this study, we identified spinactin A () and novel derivatives, spinactin B-E (-), from NRRL 18395 and characterized the biosynthetic enzymes involved, particularly a unique TE SncF, responsible for δ-lactam formation.

View Article and Find Full Text PDF

sp. THPS1 is a novel strain isolated from a high-temperature hot spring in Thailand, exhibiting distinctive genomic features that enable adaptation to an extreme environment. This study aimed to characterize the genomic and functional attributes of sp.

View Article and Find Full Text PDF

Whole genome analysis, detoxification of ochratoxin a and physiological characterization of a novel MM35 isolated from soil.

Front Microbiol

December 2024

College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, China.

Article Synopsis
  • Ochratoxin A (OTA) is a major global contaminant that affects food safety, and this study focuses on isolating probiotics capable of degrading OTA.
  • MM35, a newly identified strain, achieved an impressive 87.10% degradation of OTA within 48 hours and produced enzymes that contribute to this process.
  • The strain exhibits significant antibacterial properties and tolerance to harsh environments, making it a promising candidate for managing OTA contamination in food and feed industries.
View Article and Find Full Text PDF

Background: The marine environment boasts distinctive physical, chemical, and biological characteristics. While numerous studies have delved into the microbial ecology and biological potential of the marine environment, exploration of genetically encoded, deep-sea sourced secondary metabolites remains scarce. This study endeavors to investigate marine bioproducts derived from deep-sea water samples at a depth of 1,000 m in the Java Trench, Indonesia, utilizing both culture-dependent and whole-genome sequencing methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!