A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chiral Discrimination of Mexiletine Enantiomers by Capillary Electrophoresis Using Cyclodextrins as Chiral Selectors and Experimental Design Method Optimization. | LitMetric

Chiral Discrimination of Mexiletine Enantiomers by Capillary Electrophoresis Using Cyclodextrins as Chiral Selectors and Experimental Design Method Optimization.

Molecules

Department of Toxicology and Biopharmacy, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu Mureș, 540142 Târgu Mureș, Romania.

Published: August 2022

Mexiletine (MXL) is a class IB antiarrhythmic agent, acting as a non-selective voltage-gated sodium channel blocker, used in therapy as a racemic mixture ,-MXL hydrochloride. The aim of the current study was the development of a new, fast, and efficient method for the chiral separation of MXL enantiomers using capillary electrophoresis (CE) and cyclodextrins (CDs) as chiral selectors (CSs). After an initial CS screening, using several neutral and charged CDs, at four pH levels, heptakis-2,3,6-tri-O-methyl-β-CD (TM-β-CD), a neutral derivatized CD, was chosen as the optimum CS for the enantioseparation. For method optimization, an initial screening fractional factorial design was applied to identify the most significant parameters, followed by a face-centered central composite design to establish the optimal separation conditions. The best results were obtained by applying the following optimized electrophoretic conditions: 60 mM phosphate buffer, pH 5.0, 50 mM TM-β-CD, temperature 20 °C, applied voltage 30 kV, hydrodynamic injection 50 mbar/s. MXL enantiomers were baseline separated with a resolution of 1.52 during a migration time of under 5 min; -MXL was the first migrating enantiomer. The method's analytical performance was verified in terms of precision, linearity, accuracy, and robustness (applying a Plackett-Burman design). The developed method was applied for the determination of MXL enantiomers in pharmaceuticals. A computer modeling of the MXL-CD complexes was applied to characterize host-guest chiral recognition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458186PMC
http://dx.doi.org/10.3390/molecules27175603DOI Listing

Publication Analysis

Top Keywords

mxl enantiomers
12
enantiomers capillary
8
capillary electrophoresis
8
electrophoresis cyclodextrins
8
chiral selectors
8
method optimization
8
initial screening
8
chiral
5
chiral discrimination
4
discrimination mexiletine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!