Microwave-Enhanced Crystalline Properties of Zinc Ferrite Nanoparticles.

Nanomaterials (Basel)

Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 779 00 Olomouc, Czech Republic.

Published: August 2022

AI Article Synopsis

  • Two series of ZnFeO cubic spinel nanoparticles were synthesized using coprecipitation, with the second series incorporating microwave radiation to enhance reactions.
  • Techniques like XRD, Mössbauer spectroscopy, and magnetometry were utilized to confirm the nanoparticles' cubic structure and their superparamagnetic characteristics.
  • Microwave heating significantly affected the mean coherent length of the particles, but had a smaller impact on their overall size and BET surface area.

Article Abstract

Two series of ZnFeO mixed cubic spinel nanoparticles were prepared by a coprecipitation method, where a solution of Fe and Zn was alkalised by a solution of NaOH. While the first series was prepared by a careful mixing of the two solutions, the microwave radiation was used to enhance the reaction in the other series of samples. The effect of the microwave heating on the properties of the prepared particles is investigated. X-ray powder diffraction (XRD), Fe Mössbauer spectroscopy and magnetometry were employed to prove the cubic structure and superparamagnetic behavior of the samples. The particle size in the range of nanometers was investigated by a transmission electron microscopy (TEM), and the N adsorption measurements were used to determine the BET area of the samples. The stoichiometry and the chemical purity were proven by energy dispersive spectroscopy (EDS). Additionally, the inversion factor was determined using the low temperature Mössbauer spectra in the external magnetic field. The microwave heating had a significant effect on the mean coherent length. On the other hand, it had a lesser influence on the size and BET surface area of the prepared nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457733PMC
http://dx.doi.org/10.3390/nano12172987DOI Listing

Publication Analysis

Top Keywords

microwave heating
8
microwave-enhanced crystalline
4
crystalline properties
4
properties zinc
4
zinc ferrite
4
ferrite nanoparticles
4
nanoparticles series
4
series znfeo
4
znfeo mixed
4
mixed cubic
4

Similar Publications

Faithful quantum state transfer between telecom photons and microwave frequency mechanical oscillations necessitate a fast conversion rate and low thermal noise. Two-dimensional (2D) optomechanical crystals (OMCs) are favorable candidates that satisfy those requirements. 2D OMCs enable sufficiently high mechanical frequency (1∼10 GHz) to make the resolved-sideband regime achievable, a prerequisite for many quantum protocols.

View Article and Find Full Text PDF

Triazole, a nitrogen-containing five-membered heterocycle with two isomeric forms, 1,2,3-triazole and 1,2,4-triazole, has proven to be a valuable component in the pharmaceutical domain. Owing to its widespread utility in drug development, pharmaceutical and medicinal chemistry, several synthetic methods have been explored, such as different catalytic systems, solvents, and heating methodologies in recent years. However, some methods were associated with several limitations, such as harsh reaction conditions, high temperatures, low atom economy, and long reaction times.

View Article and Find Full Text PDF

Plasmonic heating by indium tin oxide nanoparticles: spectrally enabling decoupled near-infrared theranostics.

Nanoscale

January 2025

Nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain.

All-optical theranostic systems are sought after in nanomedicine, since they combine in a single platform therapeutic and diagnostic capabilities. Commonly in these systems the therapeutic and diagnostic/imaging functions are accomplished with plasmonic photothermal agents and luminescent nanoparticles (NPs), respectively. For maximized performance and minimized side effects, these two modalities should be independently activated, , in a decoupled way, using distinct near infrared (NIR) wavelengths: a radiation window wherein photon-tissue interaction is reduced.

View Article and Find Full Text PDF

A High-Temperature and Wide-Permittivity Range Measurement System Based on Ridge Waveguide.

Sensors (Basel)

January 2025

School of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China.

Potential applications of microwave energy, a developed form of clean energy, are diverse and extensive. To expand the applications of microwave heating in the metallurgical field, it is essential to obtain the permittivity of ores throughout the heating process. This paper presents the design of a 2.

View Article and Find Full Text PDF

The effective knowledge of emissivity is pivotal to obtain reliable temperature measurements through non-contact techniques like pyrometry and thermal imaging. This is fundamental in high-temperature applications since material emissivity strongly depends on temperature conditions. Given the recent attention in high-temperature applications, especially for replacing fossil-fuel-dependent heating with greener solutions in energy-intensive processes, renewed interest in characterizing materials radiant properties rose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!