Background: Intestinal microbiota play a role in the health and performance of athletes, and can be influenced by probiotics. Thus, in this study, we aimed to investigate the effect of the use of probiotics combined with chronic exercise on the thiol/disulfide homeostasis, a novel marker of oxidative stress.

Methods: Male Wistar rats were randomly divided into four groups: control (Cn), exercise (Ex), probiotics (P), and probiotics + exercise (PEx). A capsule containing 6 × 10 CFU of , and was given daily for eight weeks to all the experimental animals. The total thiol (TT, μmol/L) and native thiol (NT, μmol/L) concentrations were measured to determine the oxidative stress parameters. The dynamic disulfide (DD, %), reduced thiol (RT, %), oxidized thiol (OT, %), and thiol oxidation reduction (TOR, %) ratios were analyzed.

Results: The TT level was found to be significantly higher in the Ex group (p = 0.047, η = 0.259). The DD level, a marker of oxidation, was significantly lower in the PEx group (p = 0.042, η = 0.266); the highest value of this parameter was found in the Ex group. The use of probiotics alone had no effect on thiol/disulfide homeostasis.

Conclusions: We showed, for the first time, that probiotics administered "with exercise" decreased dynamic disulfide and significantly reduced oxidative damage. Therefore, we speculate that the use of probiotics in sports involving intense exercise might be beneficial to reduce oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460532PMC
http://dx.doi.org/10.3390/nu14173555DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
probiotics
8
probiotics combined
8
exercise thiol/disulfide
8
thiol/disulfide homeostasis
8
thiol μmol/l
8
dynamic disulfide
8
disulfide reduced
8
exercise
5
oxidative
5

Similar Publications

Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.

View Article and Find Full Text PDF

Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.

View Article and Find Full Text PDF

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication of sepsis characterized by myocardial dysfunction. SICM significantly increases mortality rates in sepsis. Despite its clinical relevance, SICM lacks a unified definition and standardized diagnostic criteria, complicating early identification and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!