The goal of this study was to determine the coefficient of permeability as well as the rate of carbonation of concrete constructed with rice husk ash (RHA) as a partial replacement for cement (i.e., 5%, 10%, and 15%) and two different concentrations of soap solutions (i.e., 1 percent and 2 percent). The microstructural studies of RHA, and carbonated samples have been conducted by using Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) analysis. According to this study, the carbonation depth of concrete made with 1% and 2% soap solution concentration and without rice husk ash decreased by 11.89% and 46.55%, respectively. From the results, it may also be observed that the carbonation depth of concrete made with up to 10% replacement of cement by rice husk ash led to maximum carbonation resistance, while more than 10% replacement of cement showed higher carbonation depth. It is also observed that the coefficient of permeability of concrete with 2% soap solution significantly decreased as compared to the 1% soap solution and control mix. It may be observed from the SEM images that 0% soap solution (M1) concrete has a very rough concrete surface which may indicate more voids. However, 2% soap solution concrete has a much smoother surface, which indicates a smaller number of voids. Furthermore, the SEM images showed that the soap solution helps in filling the voids of concrete which ultimately helps in reduction in permeability. Energy Dispersive X-Ray Analysis (EDX) of concrete with 0% (M1) and 2% (M6) soap solution disclosed that the concrete with 2% soap solution (M6) exhibited more silica element formation than the concrete with no soap solution (M1).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457775PMC
http://dx.doi.org/10.3390/ma15176149DOI Listing

Publication Analysis

Top Keywords

soap solution
36
concrete soap
20
concrete
12
rice husk
12
husk ash
12
replacement cement
12
carbonation depth
12
solution
10
soap
10
permeability concrete
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!