In this work, a novel total non-ionic polystyrene-polyurethane (PS-PU) composite latex was synthesized with polymerizable polyethylene glycol ether. Contrary to traditional styrene-butyl acrylate latex (St-BA), PS-PU has a smaller size and superior dispersion stability, and it is stable in saturated Ca(OH) even after 72 h. In fresh-mixed mortars, PS-PU showed a little adverse effect on workability and insignificant air entrainment, with little defoamer consumption. The retardation effect of PS-PU is also much milder than traditional St-BA. As for strength, PS-PU showed a less adverse effect on early and late age compressive strength, but its effect on flexural strength is not as pronounced as St-BA at high dosages (4% and 6%). The different behavior in cementitious materials between PS-PU and St-BA can be reasoned from their different adsorption behavior and surface charge properties, as the results from characterizations suggest. The non-ionic nature of PS-PU made it less prone to destabilization and adsorption, which turned out as the aforementioned behavior in cementitious systems. The difference can further be ascribed to the difference in their polymeric structure and properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458191PMC
http://dx.doi.org/10.3390/ma15176145DOI Listing

Publication Analysis

Top Keywords

surface charge
8
dispersion stability
8
ps-pu adverse
8
behavior cementitious
8
ps-pu
7
investigation particle
4
particle surface
4
charge dispersion
4
stability latex
4
behavior
4

Similar Publications

One of the successful techniques developed for the inhibition of metal corrosion is the utilization of phytochemicals from plant extracts as corrosion inhibitors. Theoretical studies are utilized to predict how organic components behave on metal surfaces and can pave the way for the development and synthesis of innovative, efficient corrosion inhibitors. However, atomic-level insights into the inhibition mechanisms of these green components are still needed.

View Article and Find Full Text PDF

Structural Basis of Ultralow Capacitances at Metal-Nonaqueous Solution Interfaces.

J Am Chem Soc

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.

Metal-nonaqueous solution interfaces, a key to many electrochemical technologies, including lithium metal batteries, are much less understood than their aqueous counterparts. Herein, on several metal-nonaqueous solution interfaces, we observe capacitances that are 2 orders of magnitude lower than the usual double-layer capacitance. Combining electrochemical impedance spectroscopy, atomic force microscopy, and physical modeling, we ascribe the ultralow capacitance to an interfacial layer of 10-100 nm above the metal surface.

View Article and Find Full Text PDF

Design of RuO Electrocatalysts Containing Metallic Ru on the Surface to Accelerate the Alkaline Hydrogen Evolution Reaction.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

The development of water splitting technology in alkaline medium requires the exploration of electrocatalysts superior to Pt/C to boost the alkaline hydrogen evolution reaction (HER). Ruthenium oxides with strong water dissociation ability are promising candidates; however, the lack of hydrogen combination sites immensely limits their performance. Herein, we reported a unique RuO catalyst with metallic Ru on its surface through a simple cation exchange method.

View Article and Find Full Text PDF

Nanofluidic iontronics, including the field-effect ionic diode (FE-ID) and field-effect ionic transistor (FE-IT), represent emerging nanofluidic logic devices that have been employed in sensitive analyses. Making analyte recognitions in predefined nanofluidic devices has been verified to improve the sensitivity and selectivity using a single ionic signal, such as ionic current amplification, rectification, and Coulomb blockade. However, the detection of analytes in complex systems generally necessitates more diverse signals beyond just ionic currents.

View Article and Find Full Text PDF

Nanocrystalline formulations typically contain stabilizing additives to minimize the risk of particle growth or agglomeration. This risk is particularly relevant when the nanosuspension is converted into a solid drug product as the original state of the nanosuspension should be restored upon redispersion of the drug product in vivo. In this work, the behavior of different nonionic and anionic surfactants in solid nanocrystalline formulations and their effects on redispersibility under biorelevant conditions were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!