For the common difficulties of noise control in a low frequency region, an adjustable parallel Helmholtz acoustic metamaterial (APH-AM) was developed to gain broad sound absorption band by introducing multiple resonant chambers to enlarge the absorption bandwidth and tuning length of rear cavity for each chamber. Based on the coupling analysis of double resonators, the generation mechanism of broad sound absorption by adjusting the structural parameters was analyzed, which provided a foundation for the development of APH-AM with tunable chambers. Different from other optimization designs by theoretical modeling or finite element simulation, the adjustment of sound absorption performance for the proposed APH-AM could be directly conducted in transfer function tube measurement by changing the length of rear cavity for each chamber. According to optimization process of APH-AM, The target for all sound absorption coefficients above 0.9 was achieved in 602-1287 Hz with normal incidence and that for all sound absorption coefficients above 0.85 was obtained in 618-1482 Hz. The distributions of sound pressure for peak absorption frequency points were obtained in the finite element simulation, which could exhibit its sound absorption mechanism. Meanwhile, the sound absorption performance of the APH-AM with larger length of the aperture and that with smaller diameter of the aperture were discussed by finite element simulation, which could further show the potential of APH-AM in the low-frequency sound absorption. The proposed APH-AM could improve efficiency and accuracy in adjusting sound absorption performance purposefully, which would promote its practical application in low-frequency noise control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456593 | PMC |
http://dx.doi.org/10.3390/ma15175938 | DOI Listing |
Sci Rep
December 2024
Faculty of Mechanical Engineering, Department of Machining, Assembly and Engineering Metrology, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic.
The aim of this work is to investigate the sound absorption properties of open-porous polyamide 12 (PA12) structures produced using Selective Laser Sintering (SLS) technology. The examined 3D-printed samples, fabricated with hexagonal prism lattice structures, featured varying thicknesses, cell sizes, and orientations. Additionally, some samples were produced with an outer shell to evaluate its impact on sound absorption.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue Nicosia, Aglantzia, 2109, Cyprus.
Sound absorption plays a crucial role in addressing noise pollution that may cause harm to both human health and wildlife. To tackle this environmental issue, the implementation of natural-based sound absorbing materials attracts considerable attention in the last few years. In this study, sound absorbing, eco-friendly composites are produced by combining a 3D natural sponge namely Luffa Cylindrica (LC) with cellulose acetate (CA) microfibrous layers that are fabricated through electrospinning.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
Department of Animal Science, University of California, Davis, Davis, CA 95616.
Several metrics have developed for combining the warming effects of various greenhouse gases (GHG). The metric used can affect the life cycle assessment and comparison of dairy production systems due to the weighting placed on long- versus short-lived gases in the atmosphere. Global warming potential with a time horizon of 100 years (GWP-100) has become the standard but metrics are also available for other time horizons.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Razi Metallurgical Research Center, No. 8, Fernan St., HajGhasem Asghari Blvd., Shahre Ghods Entrance (Sorkhe Hesar), Tehran P.O. Box 39, Iran.
This research investigated the sound insulation performance of 3D woven hybrid fabric-reinforced composites using natural fibers, such as jute, along with E-glass and biomass derived from agro-waste, e.g., coffee husk and waste palm fiber.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China.
This study investigates the development of biomimetic sound-absorbing components through laser sintering technology, drawing inspiration from wood's natural porous structure. Using a pine wood powder/phenolic resin composite, various specimens were fabricated with different structural configurations (solid, fully porous, and varying straight-pore ratios) and cavity thicknesses. Sound absorption performance was evaluated using the impedance tube transfer function method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!