Metamaterials, or metasurfaces, allow the flexible and efficient manipulation of electromagnetic (EM) wave. Although the passive coding metasurfaces have achieved a great deal of functionality, they also need a complex design process. In this paper, we propose Hilbert-coding metasurfaces for flexible and convenient EM regulation by arranging Hilbert-coding metamaterial units of different orders. To demonstrate this behavior, we designed 12 metasurfaces, then fabricated and measured 6 samples. Validation results on 6 Hilbert-coding metasurfaces show the deflection angles of the four single beam patterns obtained are about 21°, 13°, 12°, and 39°, with energy values of 7.75 dB, 7.3 dB, 7.2 dB, and 7.7 dB, respectively, and the deflection angles of the dual-beam patterns are 28.5° and 20° with energy values of 10.05 dB and 11.4 dB, respectively. The results are quite consistent with the simulation data, further confirming the feasibility of our idea. In addition, there are potential applications in Wireless Communications and Radar-imaging, like EM beam scanning and EM field energy distribution control in communication and imaging scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457452 | PMC |
http://dx.doi.org/10.3390/ma15175913 | DOI Listing |
Materials (Basel)
August 2022
College of Electronics and Information Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Yangpu District, Shanghai 200090, China.
Metamaterials, or metasurfaces, allow the flexible and efficient manipulation of electromagnetic (EM) wave. Although the passive coding metasurfaces have achieved a great deal of functionality, they also need a complex design process. In this paper, we propose Hilbert-coding metasurfaces for flexible and convenient EM regulation by arranging Hilbert-coding metamaterial units of different orders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!