Rotational molding is a technology in which polymeric thin-walled products can be made. The newest descriptions of this technology concern the possibility of obtaining polymer composite materials. There are two main methods of incorporating fillers into a polymer matrix. Dry blending is based on mixing fillers with polymer powders before rotational molding by hand or using automatic mixers. In the melt compounding method, fillers are mixed with the polymer in the preliminary step by melt processing and then grinding or pulverization to obtain polymer powders for rotational molding. This work aimed to investigate the impact of the processing procedure on the structure and properties of biobased composites with expanded vermiculite. Produced rotomolded parts were examined using mechanical tests to assess changes in tensile, flexural, and impact properties. The most significant difference in mechanical properties was noted for samples with 10 wt% expanded vermiculite (EV). The elasticity modulus increases by almost 2 fold when the sample is prepared in a two-step process, the tensile strength is 4-fold higher, the flexural modulus is 3-fold higher, and the flexural strength is 5-fold higher. We also investigated thermomechanical properties in DMA measurement. The void volume content was also measured to control the quality of obtained parts. The porosity of dry blended samples containing more than 2 wt% EV is almost 2-fold higher. Other methods to control quality and structure were optical and scanning electron microscopy used for rotomolded parts and polymer powders. The investigations of rotomolded parts were supplemented with a complete description of used materials, including the particle size distributions of polymer powders and filler. Analysis of the thermal properties and chemical structure was also performed despite all the mechanical tests. The emerging conclusions from the research clearly show that the two-step process allows for achieving a more beneficial mechanical performance of the composites made of the biobased polymer in rotational molding technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457396 | PMC |
http://dx.doi.org/10.3390/ma15175903 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!