Graphene produced by different methods can present varying physicochemical properties and quality, resulting in a wide range of applications. The implementation of a novel method to synthesize graphene requires characterizations to determine the relevant physicochemical and functional properties for its tailored application. We present a novel method for multilayer graphene synthesis using atmospheric carbon dioxide with characterization. Synthesis begins with carbon dioxide sequestered from air by monoethanolamine dissolution and released into an enclosed vessel. Magnesium is ignited in the presence of the concentrated carbon dioxide, resulting in the formation of graphene flakes. These flakes are separated and enhanced by washing with hydrochloric acid and exfoliation by ammonium sulfate, which is then cycled through a tumble blender and filtrated. Raman spectroscopic characterization, FTIR spectroscopic characterization, XPS spectroscopic characterization, SEM imaging, and TEM imaging indicated that the graphene has fifteen layers with some remnant oxygen-possessing and nitrogen-possessing functional groups. The multilayer graphene flake possessed particle sizes ranging from 2 µm to 80 µm in diameter. BET analysis measured the surface area of the multilayer graphene particles as 330 m/g, and the pore size distribution indicated about 51% of the pores as having diameters from 0.8 nm to 5 nm. This study demonstrates a novel and scalable method to synthesize multilayer graphene using CO from ambient air at 1 g/kWh electricity, potentially allowing for multilayer graphene production by the ton. The approach creates opportunities to synthesize multilayer graphene particles with defined properties through a careful control of the synthesis parameters for tailored applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457370PMC
http://dx.doi.org/10.3390/ma15175894DOI Listing

Publication Analysis

Top Keywords

multilayer graphene
28
carbon dioxide
12
spectroscopic characterization
12
graphene
11
graphene synthesis
8
ambient air
8
novel method
8
method synthesize
8
graphene particles
8
synthesize multilayer
8

Similar Publications

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

Many-body van der Waals interactions in multilayer structures studied by atomic force microscopy.

Nat Commun

January 2025

State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China.

Van der Waals interaction in multilayer structures was predicted to be of many-body character, almost in parallel with the establishment of Lifshitz theory. However, the diminishing interaction between layers separated by a finite-thickness intermediate layer prevents experimental verification of the many-body nature. Here we verify the substrate contribution at the adhesion between the atomic force microscopy tip and the supported graphene, by taking advantage of the atomic-scale proximity of two objects separated by graphene.

View Article and Find Full Text PDF

Stacking Engineering toward Giant Second Harmonic Generation in Twisted Graphene Superstructures.

J Am Chem Soc

December 2024

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering.

View Article and Find Full Text PDF

In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface.

View Article and Find Full Text PDF

Enhancing Quasi-Solid-State Lithium-Metal Battery Performance: Multi-Interlayer, Melt-Infused Lithium and Lithiophilic Coating Strategies for Interfacial Stability in Li||VS-DSGNS-LATP|PEO-PVDF||NMC622-AlO Systems.

ACS Appl Mater Interfaces

December 2024

Advanced Functional Nanomaterials Research Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University (A Central University), Dr. R. Venkataraman Nagar, Kalapet, Puducherry 605014, India.

The development of quasi-solid-state lithium metal batteries (QSSLMBs) is hindered by inadequate interfacial contact, poor wettability between electrodes and quasi-solid-state electrolytes, and significant volume changes during long-term cycling, leading to safety risks and cataclysmic failures. Here, we report an innovative approach to enhance interfacial properties through the construction of QSSLMBs. A multilayer design integrates a microwave-synthesized LiAlTi(PO) (LATP) ceramic electrolyte, which is surface-coated with a lithiophilic conductive ink comprising VS and disulfonated functionalized graphene nanosheets (VS-DSGNS) using a low-cost nail-polish binder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!