Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The tensile deformation behavior of double-forged (DF-W) and recrystallized (RX-W) commercial-grade tungsten was investigated at 700 °C. With increasing strain rate, the dominant dynamic recrystallization (DRX) mechanism changes from continuous dynamic recrystallization (CDRX) to discontinuous dynamic recrystallization (DDRX). For DF-W, pre-existing sub-grains promote CDRX and associated a high-DRX fraction, resulting in reduced post-necking strain under a static condition. With increasing strain rate, a shift in the restoration mechanism from CDRX to DDRX contributes to the enhanced ductility in DF-W, while RX-W shows enhanced flow hardening without a loss of ductility. These results suggest that the strain-rate dependence of mechanical behavior depends on the initial microstructure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457348 | PMC |
http://dx.doi.org/10.3390/ma15175836 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!