Interleukin 17 and Its Involvement in Renal Cell Carcinoma.

J Clin Med

University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland.

Published: August 2022

Nowadays, molecular and immunological research is essential for the better understanding of tumor cells pathophysiology. The increasing number of neoplasms has been taken under 'the molecular magnifying glass' and, therefore, it is possible to discover complex relationships between the cytophysiology and immune system action. An example could be renal cell carcinoma (RCC) which has deep interactions with immune mediators such as Interleukin 17 (IL-17)-an inflammatory cytokine reacting to tissue damage and external pathogens. RCC is one of the most fatal urological cancers because of its often late diagnosis and poor susceptibility to therapies. IL-17 and its relationship with tumors is extremely complex and constitutes a recent topic for numerous studies. What is worth highlighting is IL-17's dual character in cancer development-it could be pro- as well as anti-tumorigenic. The aim of this review is to summarize the newest data considering multiple connections between IL-17 and RCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457171PMC
http://dx.doi.org/10.3390/jcm11174973DOI Listing

Publication Analysis

Top Keywords

renal cell
8
cell carcinoma
8
interleukin involvement
4
involvement renal
4
carcinoma nowadays
4
nowadays molecular
4
molecular immunological
4
immunological essential
4
essential better
4
better understanding
4

Similar Publications

Introduction: Lupus nephritis (LN) is one of the most frequent and serious organic manifestations of systemic lupus erythematosus (SLE). Autophagy, a new form of programmed cell death, has been implicated in a variety of renal diseases, but the relationship between autophagy and LN remains unelucidated.

Methods: We analyzed differentially expressed genes (DEGs) in kidney tissues from 14 LN patients and 7 normal controls using the GSE112943 dataset.

View Article and Find Full Text PDF

Angiotensin II (Ang II) is the most active peptide hormone produced by the renin-angiotensin system (RAS). Genetic deletion of genes that ultimately restrict Ang II formation has been shown to result in marked anemia in mice. In this study, adult mice with a genetic deletion of the RAS precursor protein angiotensinogen (Agt-KO) were used.

View Article and Find Full Text PDF

METTL3, a key enzyme in N6-methyladenosine (m6A) modification, plays a crucial role in the progression of renal fibrosis, particularly in chronic active renal allograft rejection (CAR). This study explored the mechanisms by which METTL3 promotes renal allograft fibrosis, focusing on its role in the macrophage-to-myofibroblast transition (MMT). Using a comprehensive experimental approach, including TGF-β1-induced MMT cell models, METTL3 conditional knockout (METTL3 KO) mice, and renal biopsy samples from patients with CAR, the study investigates the involvement of METTL3/Smad3 axis in driving MMT and renal fibrosis during the episodes of CAR.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer with a high metastatic rate and high mortality rate. The molecular mechanism of ccRCC development, however, needs further study. Aurora kinase B (AURKB) functions as an important oncogene in various tumors; therefore, in the present study, we aimed to explore the mechanism by which AURKB affects ccRCC development.

View Article and Find Full Text PDF

Autosomal recessive proximal renal tubular acidosis (AR-pRTA) with ocular abnormalities is a rare syndrome caused by variants in the SLC4A4 gene, which encodes Na/HCO3 cotransporter (NBCe1). The syndrome primarily affects the kidneys, but also causes extra-renal manifestations. Pancreatic type NBCe1 is located at the basolateral membrane of the pancreatic ductal cells and together with CFTR chloride channel, it is involved in bicarbonate secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!