This paper presents a new, innovative technological approach, in line with Circular Economy principles, to the effective management of sludge generated during municipal wastewater treatment processes and subsequently used for biogas production. This approach allows for optimal, functional, and controlled cascade-type biotechnological thermal conversion of carbon compounds present in sewage sludge, later in solid digestate residues (after biogas production), and finally in the ash structure (after incineration, purposefully dosed nanostructural additives make the production of a useful solid product possible, especially for cyclic adsorption and slow release of nutrients (N, P, K) in the soil). The idea is generally targeted at achieving an innovative conversion cycle under a Circular Economy framework. In particular, it is based on an energy carrier (methane biogas) and direct energy production. The functionalized combustion by-products can be advantageous in agriculture. The use of ashes with nanostructural additives (halloysite, kaolinite) from combustion of sewage sludge after the anaerobic fermentation as an adsorbent of selected nutrients important in agriculture (Na, K, NO, SO, PO, Cl) was verified at laboratory scale. The tests were carried out both for pure ash and for the ash derived from combustion with the purposeful addition of kaolinite or halloysite. The equilibrium conditions for nitrate, potassium, sodium, phosphate(V), sulphate(VI), and chloride ions from aqueous solutions with the use of the three adsorbent structures were determined. The obtained innovative results were interpreted theoretically with adsorption isotherm models (Langmuir, Freundlich, Temkin, Jovanović). The most spectacular and clearly favorable results related to the influence of nanostructural additives in the process of sludge combustion, and formation of sorption surfaces under high temperature conditions were identified in the case of sorption-based separation of phosphate(V) ions (an increase from 1.13% to 61.24% with the addition of kaolinite, and even up to 76.19% with addition of halloysite).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518112PMC
http://dx.doi.org/10.3390/ijerph191711119DOI Listing

Publication Analysis

Top Keywords

nanostructural additives
16
circular economy
12
innovative technological
8
technological approach
8
economy framework
8
biogas production
8
sewage sludge
8
addition kaolinite
8
innovative
4
approach cyclic
4

Similar Publications

In recent years, environmental and food safety have garnered substantial focus due to their intimate connection with human health. Numerous biosensors have been developed for identifying deleterious compounds; however, these biosensors reveal certain limitations. Nanopore sensors, featuring nano-scaled pore size, have demonstrated outstanding performance in terms of rapidity, sensitivity, and selectivity as a single-molecule technique for environmental and food surveillance.

View Article and Find Full Text PDF

A Sensitive and Selective Electrochemical Aptasensor for Carbendazim Detection.

Biosensors (Basel)

January 2025

School of Science, Computing, and Engineering Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.

Carbendazim (CBZ) is used to prevent fungal infections in agricultural crops. Given its high persistence and potential for long-term health effects, it is crucial to quickly identify pesticide residues in food and the environment in order to mitigate excessive exposure. Aptamer-based sensors offer a promising solution for pesticide detection due to their exceptional selectivity, design versatility, ease of use, and affordability.

View Article and Find Full Text PDF

High-Performance Photocatalytic Multifunctional Material Based on BiTiO-Supported Ag and TiCT for Organic Degradation and Antibacterial Applications.

Biosensors (Basel)

December 2024

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.

With the rapid development of modern science and technology and the diversification of social needs, traditional single-performance materials struggle to meet the complex and changeable application scenarios. To address the multifaceted requirements of biomedical applications, such as disease diagnosis and treatment, scientists are dedicated to developing new multifunctional biomaterials with multiple activities. BiTiO (BTO), despite its versatility and application potential, has insufficient photocatalytic performance.

View Article and Find Full Text PDF

Thermosensitive Porcine Myocardial Extracellular Matrix Hydrogel Coupled with Proanthocyanidins for Cardiac Tissue Engineering.

Gels

January 2025

Laboratory of Immunotherapy and Tissue Engineering, Department of Cellular and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, Copilco Universidad, Coyoacán, Ciudad de México 04510, Mexico.

Currently, there are no therapies that prevent the negative myocardial remodeling process that occurs after a heart attack. Injectable hydrogels are a treatment option because they may replace the damaged extracellular matrix and, in addition, can be administered minimally invasively. Reactive oxygen species generated by ischemia-reperfusion damage can limit the therapeutic efficacy of injectable hydrogels.

View Article and Find Full Text PDF

Experimental approaches to evaluate solid lipid nanoparticle-based drug delivery systems.

Anal Methods

January 2025

Material Science Laboratory, Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai 400098, India.

Solid lipid nanoparticles (SLNs) are potential drug carriers due to the several advantages they offer. The physicochemical stability of lipid carriers varies significantly due to their diverse compositions and structures. Appropriate analytical methods are required for the complete characterization of SLNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!