Agricultural emission reduction is a key objective associated with sustainable agricultural development and a meaningful way to slow down global warming. Based on the comprehensive estimation of agricultural carbon emissions, this study applied the traditional spatial Durbin model (SDM) to analyze the type of regional emission reduction interaction and explore whether it is a direct or an indirect interaction caused by technology spillovers. Moreover, geographic, economic, and technical weights were used to discuss the channels of emission reduction interactions. The partitioned spatial Durbin model was applied to explore the realization conditions of regional emission reduction interactions. We found that: (1) comprehensive emission reduction interactions were identified in various regions of China, including direct and indirect interactions, in which geographic and technical channels were the major pathways for direct and indirect emission reduction interactions, respectively; (2) regions with similar economic development levels are more likely to have direct interactions, whereas regions with low technical levels are more willing to follow the high-tech regions, and the benchmarking effect is noticeable; (3) emission reduction results promoted by economic cooperation may be offset by vicious economic competition between regions, and more emission reduction intervention measures should be given to regions with high economic development levels; (4) to achieve better technological cooperation, regions must have similar technology absorption capabilities and should provide full play to the driving force of technical benchmarks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518124PMC
http://dx.doi.org/10.3390/ijerph191710905DOI Listing

Publication Analysis

Top Keywords

emission reduction
36
reduction interactions
16
direct indirect
12
emission
9
reduction
9
conditions regional
8
agricultural carbon
8
reduction interaction
8
spatial durbin
8
durbin model
8

Similar Publications

Inclusion of Black Soldier Fly Larval Oil in Ruminant Diets Influences Feed Consumption, Nutritional Digestibility, Ruminal Characteristics, and Methane Estimation in Thai-Indigenous Steers.

J Anim Physiol Anim Nutr (Berl)

January 2025

Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.

The objective of this study was to examine the impact of black soldier fly larval oil (BSFO) on feed consumption, nutritional digestibility, ruminal characteristics and methane (CH) estimation in Thai-indigenous steers. Four male Thai native steers (Bos indicus) weighing 383 ± 9.0 kg were used in this investigation.

View Article and Find Full Text PDF

Driving Intention Recognition of Electric Wheel Loader Based on Fuzzy Control.

Sensors (Basel)

December 2024

College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China.

Energy conservation and emission reduction is a common concern in various industries. The construction process of electric wheel loaders has the advantages of being zero-emission and having a high energy efficiency, and has been widely recognized by the industry. The frequent shift in wheel loader working processes poses a serious challenge to the operator.

View Article and Find Full Text PDF

Surface Hydrophilic Modification of Polypropylene by Nanosecond Pulsed Ar/O Dielectric Barrier Discharge.

Materials (Basel)

December 2024

College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China.

Polypropylene (PP) membranes have found diverse applications, such as in wastewater treatment, lithium-ion batteries, and pharmaceuticals, due to their low cost, excellent mechanical properties, thermal stability, and chemical resistance. However, the intrinsic hydrophobicity of PP materials leads to membrane fouling and filtration flux reduction, which greatly hinders the applications of PP membranes. Dielectric barrier discharge (DBD) is an effective technique for surface modification of materials because it generates a large area of low-temperature plasma at atmospheric pressure.

View Article and Find Full Text PDF

In this study, the effects of using different scrap ratios in a converter on carbon emissions were analyzed based on life cycle assessment (LCA) theory, and the carbon emissions from the converter were evaluated with the use of coke and biochar as heating agents at high scrap ratios. In this industrial experiment, the CO emissions during the converter smelting process decreased with the increase in the scrap steel ratio. For every 1% increase in the scrap steel ratio, the carbon emissions during the steelmaking process decreased by 14.

View Article and Find Full Text PDF

Combined Catalytic Conversion of NOx and VOCs: Present Status and Prospects.

Materials (Basel)

December 2024

School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.

This article presents a comprehensive examination of the combined catalytic conversion technology for nitrogen oxides (NOx) and volatile organic compounds (VOCs), which are the primary factors contributing to the formation of photochemical smog, ozone, and PM2.5. These pollutants present a significant threat to air quality and human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!