Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The main purposes of this study were to explore the spatial distribution characteristics of H7N9 human infections during 2013-2017, and to construct a neural network risk simulation model of H7N9 outbreaks in China and evaluate their effects. First, ArcGIS 10.6 was used for spatial autocorrelation analysis, and cluster patterns ofH7N9 outbreaks were analyzed in China during 2013-2017 to detect outbreaks' hotspots. During the study period, the incidence of H7N9 outbreaks in China was high in the eastern and southeastern coastal areas of China, with a tendency to spread to the central region. Moran's I values of global spatial autocorrelation of H7N9 outbreaks in China from 2013 to 2017 were 0.080128, 0.073792, 0.138015, 0.139221 and 0.050739, respectively ( < 0.05) indicating a statistically significant positive correlation of the epidemic. Then, SPSS 20.0 was used to analyze the correlation between H7N9 outbreaks in China and population, livestock production, the distance between the case and rivers, poultry farming, poultry market, vegetation index, etc. Statistically significant influencing factors screened out by correlation analysis were population of the city, average vegetation of the city, and the distance between the case and rivers ( < 0.05), which were included in the neural network risk simulation model of H7N9 outbreaks in China. The simulation accuracy of the neural network risk simulation model of H7N9 outbreaks in China from 2013 to 2017 were 85.71%, 91.25%, 91.54%, 90.49% and 92.74%, and the AUC were 0.903, 0.976, 0.967, 0.963 and 0.970, respectively, showing a good simulation effect of H7N9 epidemics in China. The innovation of this study lies in the epidemiological study of H7N9 outbreaks by using a variety of technical means, and the construction of a neural network risk simulation model of H7N9 outbreaks in China. This study could provide valuable references for the prevention and control of H7N9 outbreaks in China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518328 | PMC |
http://dx.doi.org/10.3390/ijerph191710877 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!