Air pollution is a global public health threat. Evidence suggests that increased air pollution leads to increased cardiovascular morbidity and mortality. The aim of this review was to systematically review and synthesize scientific evidence to understand the effect of performing outdoor physical activity (PA) in a polluted environment on cardiovascular outcomes. This review was developed and reported in accordance with the PRISMA guidelines. Electronic searches in Embase, Web of Science, and PubMed were undertaken through March 2021 initially, and later updated through to 31st January 2022, for observational studies published in peer-reviewed journals that report cardiovascular mortality or morbidity due to outdoor PA in air polluted environment. These searches yielded 10,840 citations. Two reviewers independently reviewed each citation for its eligibility. Seven studies were found to be eligible. Of these, five were cohort studies and two were cross-sectional studies. Pollutants measured in the selected studies were Particulate Matter (PM)-PM10, PM2.5, nitrogen oxides (NO), and ozone (O). The most common study outcome was myocardial infarction, followed by cardiovascular mortality, hypertension and heart rate variability. Six studies emphasized that the PA has beneficial effects on cardiovascular outcomes, though air pollutants attenuate this effect to an extent. Two studies showed that walking, even in the polluted environment, significantly reduced the heart rate and heart rate variability indices. The beneficial effects of outdoor PA outweigh the harmful effects of air pollution on cardiovascular health, though the benefits reduce to an extent when PA is carried out in a polluted environment. Because a limited number of studies ( = 7) were eligible for inclusion, the review further emphasizes the critical need for more primary studies that differentiate between outdoor and indoor PA and its effect on cardiovascular health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9517891 | PMC |
http://dx.doi.org/10.3390/ijerph191710547 | DOI Listing |
Sci Rep
January 2025
Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki-Giza, Egypt.
The COVID-19 pandemic has caused significant mortality and morbidity for millions of people. Severe Acute Respiratory Syndrome-2 (SARS-CoV-2) virus is capable of causing severe and fatal diseases. We evaluated the antiviral properties of Aspergillus tamarii SP73-EGY isolate extract against low pathogenic coronavirus (229E), Adeno-7- and Herpes-2 viruses.
View Article and Find Full Text PDFNat Commun
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China.
Skin-like sensors capable of detecting multiple stimuli simultaneously have great potential in cutting-edge human-machine interaction. However, realizing multimodal tactile recognition beyond human tactile perception still faces significant challenges. Here, an extreme environments-adaptive multimodal triboelectric sensor was developed, capable of detecting pressure/temperatures beyond the range of human perception.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.
View Article and Find Full Text PDFNat Commun
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
The extensive application of graphene nanosheets (GNSs) has raised concerns over risks to sensitive species in the aquatic environment. The humic acid (HA) corona is traditionally considered to reduce GNSs toxicity. Here, we evaluate the effect of sorbed HA (GNSs-HA) on the toxicity of GNSs to Gram positive Bacillus tropicus.
View Article and Find Full Text PDFTalanta
December 2024
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:
Tetracycline (TC) is widely used in veterinary medicine and animal feed; however, TC residues in food pose a risk to human health. Thus, the sensitive and selective detection of TC is needed to ensure food safety. Herein, we developed a CRISPR-Cas12a biosensor with competitive aptamer binding to detect TC residues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!