A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differentiation Capacity of Bone Marrow-Derived Rat Mesenchymal Stem Cells from DsRed and Cre Transgenic Cre/ Models. | LitMetric

Differentiation Capacity of Bone Marrow-Derived Rat Mesenchymal Stem Cells from DsRed and Cre Transgenic Cre/ Models.

Cells

Department of Medical Imaging, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan.

Published: September 2022

Cre/ recombination is a well-established technique increasingly used for modifying DNA both in vitro and in vivo. Nucleotide alterations can be edited in the genomes of mammalian cells, and genetic switches can be designed to target the expression or excision of a gene in any tissue at any time in animal models. In this study, we propose a system which worked via the Cre/ switch gene and DsRed/emGFP dual-color fluorescence imaging. Mesenchymal stem cells (MSCs) can be used to regenerate damaged tissue because of their differentiation capacity. Although previous studies have presented evidence of fusion of transplanted MSCs with recipient cells, the possibility of fusion in such cases remains debated. Moreover, the effects and biological implications of the fusion of MSCs at the tissue and organ level have not yet been elucidated. Thus, the method for determining this issue is significant and the models we proposed can illustrate the question. However, the transgenic rats exhibited growth slower than that of wild-type rats over several weeks. The effects on the stemness, proliferation, cell cycle, and differentiation ability of bone marrow-derived rat MSCs (BM-rMSCs) from the models were examined to ensure our design was appropriate for the in vivo application. We demonstrated that MSC surface markers were maintained in DsRed and Cre transgenic rMSCs (DsRed-rMSCs and Cre-rMSCs, respectively). A WST-8 assay revealed decreased proliferative activity in these DsRed-rMSCs and Cre-rMSCs; this result was validated through cell counting. Furthermore, cell cycle analysis indicated a decrease in the proportion of G1-phase cells and a concomitant increase in the proportion of S-phase cells. The levels of cell cycle-related proteins also decreased in the DsRed-rMSCs and Cre-rMSCs, implying decelerated phase transition. However, the BM-rMSCs collected from the transgenic rats did not exhibit altered adipogenesis, osteogenesis, or chondrogenesis. The specific markers of these types of differentiation were upregulated after induction. Therefore, BM-rMSCs from DsRed and Cre transgenic models can be used to investigate the behavior of MSCs and related mechanisms. Such application may further the development of stem cell therapy for tissue damage and other diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455627PMC
http://dx.doi.org/10.3390/cells11172769DOI Listing

Publication Analysis

Top Keywords

dsred cre
12
cre transgenic
12
dsred-rmscs cre-rmscs
12
differentiation capacity
8
bone marrow-derived
8
marrow-derived rat
8
mesenchymal stem
8
stem cells
8
transgenic rats
8
cell cycle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!