Ruminants produce large amounts of methane as part of their normal digestive processes. Recently, feed additives were shown to inhibit the microorganisms that produce methane in the rumen, consequently reducing methane emissions. The objective of this study was to evaluate the dose-response effect of var. (PHN) and supplementation on in vitro rumen fermentation, methane, and carbon dioxide production, and the microbial population. An in vitro batch culture system was used, incubated without bamboo leaves (control) or with bamboo leaves (0.3, 0.6, and 0.9 g/L). After 48 h, total gas, methane, and carbon dioxide production decreased linearly with an increasing dose of bamboo leaves supplementation. The total volatile fatty acid, acetate, and acetate-to-propionate ratio were affected quadratically with increasing doses of bamboo leaves supplementation. In addition, propionate decreased linearly. Butyrate was increased linearly with increasing doses of PHN supplementation. The absolute values of total bacteria and methanogenic archaea decreased linearly and quadratically with an increasing dose of PHN treatment after 48 h. These results show that bamboo leaves supplementation can reduce methane production by directly affecting methanogenic archaea, depressing the metabolism of methanogenic microbes, or transforming the composition of the methanogenic community. These results need to be validated using in vivo feeding trials before implementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454597PMC
http://dx.doi.org/10.3390/ani12172222DOI Listing

Publication Analysis

Top Keywords

bamboo leaves
24
decreased linearly
12
leaves supplementation
12
methane production
8
phn supplementation
8
methane carbon
8
carbon dioxide
8
dioxide production
8
linearly increasing
8
increasing dose
8

Similar Publications

Testing the Validity of the Montgomery-Koyama-Smith Equation for Calculating the Total Petal Area per Flower Using Two Rosaceae Species.

Plants (Basel)

December 2024

Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China.

The size of floral organs is closely related to the successful reproduction of plants, and corolla size is, to some extent, indicative of the size of floral organs. Petals are considered to be homologous to leaves, so we also attempted to estimate the area of a single petal using the method that is typically employed for estimating single leaf area (i.e.

View Article and Find Full Text PDF

The concept of a geometric series (GS) plays an important role in mathematics. However, it has been neglected in describing biological size series. Herein, we show that a GS describes the nonreproductive (perianth) parts of the flowers of four Magnoliaceae species and two Rosaceae species and the leaves of 60 Alangium chinense and 60 Shibataea chinensis shoots.

View Article and Find Full Text PDF

Unlabelled: The rapid growth of Bamboo made the uptake and allocation of nitrogen much important. Nitrate is the main form that plant utilized nitrogen by nitrate transporters (NRTs) as well as ammonium salt. In this study, we identified 155 genes which mapped to 32 chromosomes out of 35 chromosomes in .

View Article and Find Full Text PDF

BZR1 targets steroid 22-alpha hydroxylase 4 to negatively regulates cell elongation in bamboo.

Int J Biol Macromol

December 2024

Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China. Electronic address:

Moso bamboo is renowned for its exceptional growth rate, driven by rapid cell proliferation and elongation in culm internodes. This study uncovers the novel role of brassinosteroids (BRs) in regulating bamboo shoot growth, revealing a previously unknown negative correlation between BR levels and growth rates. Notably, we identify BRASSINAZOLE RESISTANT1 (BZR1) acts as a key transcription factor in BR signaling, governing the expression of genes involved in BR biosynthesis and growth.

View Article and Find Full Text PDF

Sasa senanensis (a dwarf bamboo), an evergreen herbaceous plant native to the cool temperate regions of eastern Asia, endures seasonal temperature fluctuations and significant variations in light intensity typical for understory plants. Following snowmelt in early spring, the light intensity received by Sasa leaves surges, then diminishes as the canopy of upper deciduous trees develops. The current-year leaves of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!